TRI-CITIES AREA YEAR 2040 TRANSPORTATION PLAN

Adopted ____, 2017

Tri-Cities Metropolitan Planning Organization

Acknowledgement

This report was prepared by the staff of the Crater Planning District Commission on behalf of the Tri-Cities Metropolitan Planning Organization in cooperation with the U.S. Department of Transportation, Federal Highway Administration (FHWA), Federal Transit Administration (FRA), the Virginia Department of Transportation (VDOT) and the Virginia Department of Rail and Public Transportation (VDR\&PT).

Disclaimer

This document reflects the views of the Tri-Cities Area Metropolitan Planning Organization. The staff of the Crater Planning District Commission is responsible for the facts and the accuracy of the data presented. The contents may not reflect the views or policies of the Federal Highway Administration (FHWA), the Virginia Department of Transportation (VDOT), or the Crater Planning District Commission (CPDC). This report is not a standard, specification, or regulation. FHWA or VDOT acceptance of this report is evidence of fulfillment of the objectives of this planning study and is not an endorsement or approval of any recommended improvement approval of their location or design or a commitment to fund any improvements. Additional project level environmental impact assessments and/or studies of alternatives may be necessary.

Notice of Non-Discrimination - Title VI

The Tri-Cities Metropolitan Planning Organization (MPO) complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. For more information, see
http://www.craterpdc.org/transportation/title_vi.htm

NO DISCRIMINACIÓN
La Organización Tri-Cities Area Metropolitana de Planificación (TCAMPO) Cumple totalmente con el Título VI de la Ley de Derechos Civiles de 1964 y los estatutos y los reglamentos relacionados con toda programas y activida des. EI TCAMPO se esforzará para proporcionar ajustes ra
zonables y servicios para personas que requieran asistencia especial para participar en este público oportunidad de participación. Para obtener más información sobre el cumplimiento de la accesibilidad, o para obtener una cumplimiento de la accesibilidad, o para obtener una Formulario de Queja Título VI, http://www.craterpdc.org/transportation/title_vi.htm o llame al Título VI Coordinador en el 804-861-1666.

Table 1: Tri-Cities MPO Policy Board Members

Federal Title/Requirement	Summary	Compliance Status
23 U.S.C. 134	Encourages safe, efficient, surface transportation systems.	Complies
49 U.S.C. 5303	Encourages safe, efficient transportation systems to meet mobility needs in urbanized areas.	Complies
42 U.S.C. 7504, 7506(c), 7506(d) ; 40 CFR § 93	General Conformity and Transportation Conformity	Not Applicable
Title VI of the Civil Rights Act of 1964 (as Amended) (42 U.S.C 2000d 01) (49CFR § 21)	Prohibits discrimination based on race, color, or national origin in programs receiving federal financial assistance	Complies
49 U.S.C. 5332	Prohibits discrimination based upon race, color creed, national origin, sex, or age in employment or business opportunity.	Complies
Section 1101 (b) of the Fast Act \& 49 CFR § 26	Encourages using disadvantaged business enterprises on USDOT funded projects.	Complies
23 CFR § 230	Equal employment opportunity in Federal \& Federal- aid highway construction projects.	Complies

Federal Title/Requirement	Summary	Compliance Status
Americans with Disabilities Act (42 U.S.C. 6101) \& 49 CFR §s 27, 37, \& 38.	Prohibits age discrimination in programs receiving federal assistance.	Complies
Older Americans Act (42 U.S.C 6101)	Prohibits discrimination based upon age in programs receiving Federal financial assistance.	Complies
Title 23 U. S. C section 324	Prohibits discrimination based upon sex.	Complies
Section 504 of the Rehabilitation Act of 1973	Prohibits Discrimination against individuals with disabilities	Complies

Tri-Cities Area Metropolitan Planning Organiza-

 tion 2017 Self-Certification ResolutionTRI-CITIES AREA METROPOLITAN PLANNING ORGANIZATION 2018 SELF-CERTIFICATION RESOLUTION
The th.C.Ches Mefocoolton Porning Croonizston and the Cormonneath of Vigivia herbby

WEEPAS. The MPO Encourozes sche. efficent surfoce trarsportation os required by 23 U.SC 134 and 49 USC. 5003 non 5 SOC: and
 oontamity Apples and

WHETFEAS He NPO encouroges the use of disodruntosed bisheses enteppless on USDOT tunce
and

WHEFACAS the MPO Candies with 23 CSR 5230 Iegardng equad occoctinty in Federic ond Federd:Ald hlytwor Coratiuction profectiond

 WHEREAS Ste MPO comples with The 23 US.C. 5324 ond
WHERAS The MPO comples with Section 504 of tre Rethobleation Act of 1973
 onsportation Ploming Pequienernts.

 Commitee remben persent cortring that the tronspocration poloning pocess h the Ti-Clites moi is beng conducted in occacdonce with te ocovel eexdative poyiso

Tif-Cilies Metropofton Plarning Organizolon Im tue
The Honocatle Jotn Wiood Vice-Chait, Ti-Cities Metropoliton Ponning Organization
Date:Apric 132007
Page 6 of 8

Vighic Dopartmento t Tionsporctition
Distict Parne

Date: -- 2017

Resolution of the Tri-Cities Metropolitan Planning Adopting the 2040 Metropolitan Transportation Plan

WHEREAS, the U.S. Department of Transportation provides financial assistance to public agencies for transportation technical studies; and

WHEREAS, the U.S. Department of Transportation requires approval of regional transportation plans and programs by the Metropolitan Planning Organization (MPO) in accordance with 23 U.S. C. Part 450; and

WHEREAS, the Tri-Cities Area Transportation Policy Committee is the duly designated Metropolitan Planning Organization for the Tri-Cities Area; and

WHEREAS, the Tri-Cities Area Metropolitan Planning Organization, pursuant to its adopted participation process, has considered public comments received on the 2040 Transportation Plan

NOW, THEREFORE BE IT RESOLVED, the Policy Committee of the Tri-Cities Area Metropolitan Planning Organization here by endorses the Tri-Cities Area 2040 Transportation Plan.

Upon a motion by \qquad seconded by dorse the 2040 Transportation Plan as presented on sent. with \qquad of the 9 voting members pre-

Chair, Tri-Cities Area Metropolitan Planning Organization

Date: \qquad
Contents
Acknowledgemen 2
Disclaimer 2
Notice of Non-Discrimination - Title VI. 2
Tri-Cities Area Metropolitan Planning Organization 2017 SelfCertification Resolution... 3
Resolution of the Tri-Cities Metropolitan Planning Adoptingthe 2040 Metropolitan Transportation Plan .3
Executive Summary Tri-Cities Area Year 2040 Transportation PlanIntroduction.
\qquad 7
Socio-Economic Estimates and Projections 7
The Transportation System 7
The Scope of Transportation Planning 7
Goals Objectives and Performance Measures 8
The Financial Plan 8
Appendices

\qquad 8
Appendix M: Glossary 8
Section 1 - Introduction 10
Section 2 - Tri-Cities Area Socio-Economic Estimates and Projections.10
Population.. 10
Elderly Population 11
Minority Population 11
Housing 11
Automobile Ownership 12
Employment 12
Commuting 12
Section 3 - The Transportation System 13
The Highway System 13
Transit..18
Intercity Bus.21
Ridesharing Services. 21
Bicycle and Pedestrian 22
For Hire (Taxi) Service 22
Passenger Rail 22
Air Transportation 28
Change Drivers 28
Autonomous Vehicles. 29
Big Data. 29
Unmanned Aerial Vehicles (Drones) 29
Ride Haling Services. 29
Shale Oil/Gas 29
Section 4 - The Scope of Transportation Planning29
§450.306(b) (1) Support the economic vitality of themetropolitan area, especially by enabling globalcompetitiveness, productivity, and efficiency. 29
§ 450.306 (b) (2) Increase the safety of the transportation
system for motorized and non-motorized users 30
$\S 450.306$ (b) (3) Increase the security of the transportation
system for motorized and non-motorized users 31
§450.306 (b) Increase accessibility and mobility of peopleand freight 31
Human Service Transportation 32
Freight. 34
§450.306 (b) (5) Protect and enhance the environment,
promote energy conservation, improve the quality of lifeand promote consistency between transportationimprovements and State and local planned growth andeconomic development patterns...........economic development patterns 36
Protect and Enhance the Environment 36
Promote energy conservation 47
Improve the quality of life 48

Promote consistency between transportation improvements and State and local planned growth and economic development patterns... \qquad
Environmental Justice Assessment of the Transportation Plan.
§450.306 (b) (6) Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight.
.. 58 $\S 450.306$ (b) (7) Promote efficient system management and operation \square
§450.306 (b) (8) Emphasize the preservation of the existing transportation system.. 58
§450.306 (b) (9) Improve the resiliency and reliability of the transportation system and reduce or mitigate storm water impacts of surface transportation. \qquad
Topography ... 62
Hydrology ... 62
Hurricane and Floods ... 62
Hurricane Cycles ... 62
100 Year Flood Map of the Tri-Cities MPO........................ 63
Recommendations .. 63
$\S 450.306$ (b) (10) Enhance travel and tourism.................... 63
§450.316 Participation of Interested Parties......................... 63
Section 5 - Metropolitan Transportation Goals, Objectives and Performance Measures. \qquad
Transportation Goals, and Objectives 64
Performance Measures .. 64
Section 6 - §450.324(f) (11) the Financial Plan 70
Project Prioritization.. 70
Funding Programs .. 70
Congestion Mitigation and Air Quality (CMAQ) Program
Regional Surface Transportation Program (RSTP)Program.. 70
Smart Scale 70
Six Year Improvement Program. 70
Transportation Alternatives Program (TAP) 71
VTrans 2040 71
Available Fund 71
Section 7 - Appendices 78
Appendix A: Comment Log 79
Appendix B: Copies of Media Advertising \& Social Media Posts. 80
TCMPO Facebook Page 80
TCMPO Website 81
Hopewell News 82
Progress Index 83
Richmond Times Dispatch 84
Ridefinders Facebook Page 85
Urban Weekly. 86
Appendix C: Correlation Plots of Fatal Accidents byJurisdiction.D: Analysis Security Incidentsnts.......................... 92 92
Appendix E: Human Services Transportation Providers 93
Appendix F: Interagency Contact List. 97
Appendix G: Available Funds for the Transportation Plan in in
... 98
Appendix H: Level of Service 100Appendix I Richmond/Tri-Cities Travel Demand ModelDevelopment. 101
Appendix J: Summary of Simulations Data 102
Appendix K: Executive Summary of the EnvironmentalAssessment and Section 4(f) Tri-Cities Multimodal Station. 106
107Appendix L: References..
Appendix M: Glossary of Terms
\qquad117
Table 1: Tri-Cities MPO Policy Board Members 2
Table 2: Self Certification Checklist 2
Table 3: TCMPO Population Growth 11
Table 5: PAT Fare Structure. \ldots
Table 6: Private Transportation Providers.20
.. .22
Table 7: Bicycle and Pedestrian Goals, Objectives and Policies 24
Table 8: Richmond International Airport Runways 28
Table 9: Dinwiddie County Airport Runways 28
Table 10: Possible Effects of Autonomous Vehicles 29
Table 11: Sensitive Species 39
Table 12: Environmental Mitigation Strategies 45
Table 13: Fuel Efficiency Strategies for Vehicles. 47
able 14: Potentially Congested Roadways 61
Table 15: Tri-Cities MPO Performance Measures 65
Table 16: Funding Projection by Six Year Period. 71
Table 17: Prioritized Project List 72
able 18: Human Services Transportation Providers 93
Table 19: Agency Contacts 97Table 20:Dollars)Table 21: Available Funding for the Years 2023 through 2028 (Constant 98
Dollars) 98
Table 2Dollars
Ilars) 99
ant
Dollars Dollars)99
Table 24: Level of Service Definition 100
Figure 1: Project Location Map 9
igure 2: Tri-Cities MPO Location and Boundary11
Figure 4: Percent of Population by Jurisdiction11
Figure 5: Elderly Population by Jurisdiction 11
Figure 6: Ethnic Composition by Jurisdiction 11
Figure 7: Expected Housing Units by Jurisdiction 12
Figure 8: Tri-Cities MPO Auto Ownership $\ldots . .12$
Figure 9: Tri-Cities Area Employment 12
Figure 10 Tri-Cities Employment by Jurisdiction 12
Figure 11: Tri-Cities Mode Choice 13
Figure 12: Average Commute Time. 13
Figure 13: Tri-Cities Highway System Mileage 13
Figure 14: Vehicle Miles of Highway Capacity13
Figure 15: The Highway System with Points of Interest 14
Figure 16: Percent of Capacity in Each Classification.15
figure 17: Hourly Capacity vs Hourly Demand 15
Figure 18: Demand on the System 15
Figure 19: Future Travel Demand on the Highway System 15
Figure 20: Demand on the Interstate System 15
on the In $\ldots . .16$
Figure 22: Demand on the Primary System 16
Figure 23: Future Travel Demand on the Primary System 16
Figure 24: Demand on the Secondary System 16
Figure 25: Future Demand on the Secondary System...16
Figure 26: Bridge Condition in the MPO. 17
Figure 27: Interstate Bridge Condition by Jurisdiction 17
Figure 28: Primary Road Bridges by Jurisdiction $\ldots . . .17$
Figure 29: Modal Interactions at the Benjamin Harrison Bridge. 17
Figure 30: The Benjamin Harrison Bridge 18
Figure 31: Change in Pavement Condition 18
Figure 32: Interstate Pavement Condition by Jurisdiction 18
Figure 33: Primary Pavement Condition by Jurisdiction 18
Figure 34: Petersburg Multi-Modal Station 18
Figure 35: Transit Routes. 19
Figure 36: Yearly Transit Ridership 20
Figure 37: Projected Fixed Route Ridership 20
igure 38: Age of PAT Vehicles20
Figure 39: Historic Demand Response Ridership 20
Figure 40: Projected Demand Response Ridership 21
Figure 41: Seasonal Variation in Ridership 21
Figure 42: GTRC Bus Route 95X to Richmond2
Figure 45: AMTRAK Boardings
Figure 47: Proposed High Speed Rail Alignment in the MPO - North End.
Figure 48: Proposed High Speed Rail Alignment in the MPO - South End
Figure 50: Dinwiddie County Airport ... 29
Figure 51: Driving Times from VA. \quad...................................... 30
Figure 52: US Atlantic Port Tonnages-2009 30
Figure 53: Fatalities by Jurisdiction.. 3
Figure 54: Fatality Rate by Jurisdiction ... 31
Figure 55: Highway Crash Rates for the Tri-Cities MPO....................... 33
Figure 56: Washington to NC Corridor (Cambridge Systematics,
2014)
Figure 57: Richmond Marine Terminal .. 35
Figure 58: Heartland Corridor (Cambridge Systematics, 2014).......... 35
Figure 59: Rail Distances from VA (Virginia Advantages: Distribution \&
Global Logistics, 2015)
,Figure 62. CSX Collier Yard36
Figure 63: Project Developmen 36
Figure 64: Heavy Truck Flows 37
tal Sensitivity Map47
Figure 67: Tri-Cities MPO Tailpipe CO2 per Year 47
Figure 68: Energy Efficiency Paths of Influence 47Figure 70: Excess Fuel Used due to Congestion48
Figure 71. Hours of Delay per Person 48
Figure 72: Ozone Trend in the Tri-Cities MPO 48
Figure 73: Land Use Transportation Cycle51
Figure 74: Diversity 52
Figure 76: Zero Vehicle Households 53Figure 78: Poverty 55
Figure 79: Population Over 65 56

Executive Summary Tri-Cities Area Year 2040 Transportation Plan

Report Section

Introduction
The Policy Committee of the Metropolitan Planning Organization (See Table 1 on Page 2) is the transportation decision making body for the Tri-Cities MPO. This report is intended to describe the 2040 transportation plan and show that the Tri-Cities Metropolitan Planning Organization complies with the transportation planning requirements of 23 CFR Part 450 and other legal requirements (See Table 2 on Page 2).

Socio-Economic Estimates and Projections The MPO expects population and employment to grow slowly for the next twenty years. We expect the counties to grow faster than the cities (See Figure 3). We emphasize this because the independent city concept affects the relationship between counties and cities with respect to annexation and economic development. The MPO expects growth of around 1% per year.

The population over 65 is expected to grow and need more paratransit services.

Most commuters drive alone. The percentage of commuters driving alone in higher in the MPO than in the US as is the number of carpoolers(See Figure 11 on page 13). The average commute time in the MPO is around twenty-two and a half minutes. This is below the average commute time for Virginia and for the US (See Figure 12 on page 13).

The Transportation System
The MPO's transportation system includes highways, transit, intercity bus, ridesharing, taxis, sidewalks, bikeways, passenger rail, and airports. There is also access to Port of Virginia facilities at Richmond and Norfolk.

The highway system (See figure 15 on page 14) was mostly in place by 1970 and is coming to the end of its design life. The implication of this is that parts of the highway system are ready for reconstruction even without rapid growth.

Highway demand is growing slowly; however there is site specific congestion as shown in Figure 82 and Figure 83. Bridge conditions meet or exceed the Virginia Department of transportation's goal of having less than six percent (6\%) of bridges deficient except in Dinwiddie County where eighteen percent (18\%) of primary bridges are deficient (See Figure 27 on page 17). Pavement conditions on the Interstates are generally below the VDOT's goal of having eighty-two percent (82%) of pavement in fair or better condition. Furthermore pavement condition is getting worse in five of six member jurisdictions (Figure 31 and Figure 32 on page 18).

Petersburg Area Transit operates fixed route and de mand response service to major employers and medical facilities in the MPO. The system operates thirteen routes out of its transit center on Washington Street in Petersburg. This facility also hosts intercity bus service provided by Greyhound and the Greater Richmond Transit System. The average fixed route ridership has been around 529,000 trips per year since 2003. The demand response system has served 11,600 riders per year since 2003. Both services have been flat or declining since 2003. The chief capital needs of the transit system will be maintaining rolling stock and facilities.

Sidewalks are mostly confined to the city limits and maintenance of the system depends upon local funding. There is a recreational trail system available as shown in Figure 44 on page 23. An important goal for the recreational system is to connect the proposed Lower Appomattox River Trail from Hopewell to the Virginia Capital Trail in Charles City/County (See Figure 87 on page 63).

The Scope of Transportation Planning

The Tri-Cities MPO is well positioned in the globa markets given its access to the international gateway at the Port of Virginia and its proximity to the US population centers. It is less than ten hours from Boston, Atlanta, and Indianapolis; and situated at the crossing of I-95 and US 460. In addition the Port of Virginia is one of the few ports on the east coast capable of accepting post-Panamax shipping without dredging

The number and severity of traffic accidents in the Tri-Cities MPO is consistent with that of the Commonwealth of Virginia (Figure 54 page 50). The MPO has incorporated the Virginia Strategic Highway Safety Plan by reference as the safety element of the Metropolitan Transportation Plan

The MPO has reviewed potential security risks to transportation and believes that there is a need for additional secure truck parking in the Com monwealth and inside the MPO. We have also evaluated to potential for terrorism and believe we should continue to support Fort Lee's security efforts as they relate to controlling post access.

The MPO is incorporating the 2014 regional consolidated human services transportation plan by reference.
Because the MPO is situated at the intersection of the Heartland Corridor and the Washington to North Carolina Corridor there are many logistics facilities in the region. For the region to be suc cessful it is important to maintain and improve these corridors and access to Port of Virginia facilities.

The Metropolitan Transportation Plan discusses the key environmental issues facing the region:

- Threatened and Endangered Species
- Energy Use;
- Air Quality: and
- Environmental Justice

Figure 65 and Table 11 show environmentally sensitive areas of the MPO and pictures of sensitive
environmental resources in the area. Table 12 on page 45 lists the legal and regulatory require ments and suggests options for avoidance, minimization and mitigation.

Figures 74 through 80 show the likely underserved communities in the region.

The MPO's congestion management process it the key to managing operations. The congestion management process was updated while the transportation plan was being developed and its results have been used in developing the Metro politan Transportation Plan and in writing this re port.

The MPO has emphasized preserving our investment in transportation by focusing on pavemen condition, bridge condition its choice of rehabili tation projects. Figures $26,27,28,31,32,33$ and 35 show this emphasis for highways and transit.

We have chosen to focus upon hurricane related flooding to address resiliency. The MPO straddles the fall line in Southside Virginia which creates two distinct flooding zones. West of the fall line the focus needs to be on maintaining drainage struc tures. East of the fall line the focus will be on maintaining evacuation routes and elevating roadways to avoid multi-day floods.

Travel and tourism are important to the region There are many colonial, revolutionary war, civ war and civil rights era sites in the area. Further more the Appomattox River is a tourist draw. The MPO's support of travel and tourism include support for the National Park Service's new infor mation center, the Battlefield Trolley service and connecting the Lower Appomattox River Trail to the Virginia Capital Trail, the James River and ultimately to Colonial Williamsburg, Yorktown, and Jamestown.

Stakeholder involvement was performed as spe cific in the 2015 Public Participation Plan. Appen $\operatorname{dix} A$ is a summary of the comments received and
the MPO's response to them.
Goals Objectives and Performance Measures
The MPO has collected information for performance measures used to evaluate the how well the transportation system is working. The information comes from many sources and has been collected at for the smallest scope (the jurisdiction if possible). Table 15 beginning on page 63 shows the performance information. This information has been used to inform the discussion of the transpor been used to inform the discussi of of the transporation system in earlier parts of the report. The MPO is using VDOT's performance measures as our performance goals. The report's discussion and that in the Transportation Improvement Program and in the Performance Measures report are intended to refine the performance goals to achieve the statewide goals.

The Financial Plan

The financial plan includes a list of the transportation projects proposed by the MPO between now and 2040 and the financial information needed to determine if the transportation program can actually be built, maintained and operated. This section also includes discussions of project prioritization and accounting for inflation.

The financial plan is divided into phases to simplify fi-
63 nancial planning. The phases are 2017-2022 (the current Metropolitan Transportation Improvement Program); 2023 to 2028; 2029 through 2034 and 2040. The prioritized project list in Table 17(starting on page 72) divides the projects into these same time periods. Some projects are shown as starting after 2040 because there is not enough money to start them earlier

The financial plan also accounts for inflation. This means that although Figure 90 shows that even though revenues are growing the purchasing power of the money will only be three quarters of today's purchasing power. The problem is worse for transit because transit revenues are expected to be constant until 2040.

Appendices

Appendix B: Media and Internet Advertising
Appendix C: Safety Analysis by Jurisdiction
Appendix D: Security Analysis
Appendix E: Human Services Transportation Providers
Appendix F: Interagency Contact List
Appendix G: Available Funds
Appendix H: Level of Service
Appendix I: Richmond/Tri-Cities Travel Demand
Model Development
Appendix J: Summary of Simulation Data
Appendix K: Executive Summary of the Environ mental Assessment and Section 4(f) Statement for mental Assessment and Section
Appendix L: References
115,116
Appendix M: Glossary

Figure 1: Project Location Map

Section 1 - Introduction

Congress intends that the Metropolitan Planning Process be:

- Continuous,
- Cooperative,
- Comprehensive
- Performance Based and
- Multimodal (USDOT, 2016).

The Tri-Cities Metropolitan Planning Organization was created on March 21, 1974, under Title 23 of the United States Code, by cooperative agreement between the Crater Planning District Commission and the Virginia Department of Highways. The Cities of Colonial Heights, Hopewell, Petersburg and the Counties of Chesterfield, Dinwiddie and Prince George entered into subsequent agreements in support of a continuing transportation planning process for the metropolitan area. On November 7, 1979 Virginia's Secretary of Transportation designated the Tri-Cities Area Policy Committee as the Metropolitan Planning Organization for the Tri-Cities Area

The MPO consists of a Policy Committee, and a Technical Committee. The Policy Committee is responsible for transportation planning for the region including:

- the Unified Planning Work Program (UPWP):
- the Metropolitan Transportation Plan (MTP);
- the Transportation Improvement Program (TIP);
- the Congestion Management Process (CMP);
- the Stakeholder Participation Plan;
- the Title VI Compliance Plan; and
- Ensuring that all plans meet federal requirements.

Elected representatives from the six jurisdictions within the study area, appointed representatives from the Office of the Virginia Secretary of Transportation, the Crater Planning District Commission (CPDC) and Petersburg Area Transit (PAT) are the voting membership of the MPO - Policy Committee. Representatives from the Federal Transit Administration, the Federal Highway Administration and the Virginia Department of Rail and Public Transportation 10/Page
(VDR\&PT) also participate on the MPO - Policy Committee as nonvoting members.

The Technical Advisory Committee is composed of representatives from public works, engineering, planning, or traffic engineering staffs of the six local jurisdictions, VDR\&PT, VDOT, PAT and the CPDC. It provides technical support to Policy Committee. Representatives of Fort Lee and the National Park Service at Petersburg National Battlefield serve on the Technical Committee as advisory members because of their importance to the Tri-Cities area.
Title 23 Part 450 of the Code of Federal regulations describes the requirements of the metropolitan transportation planning process. This report documents and describes the Metropolitan Transportation Plan. The report includes an executive summary, six sections discussing parts the transportation plan and appendices containing additional information.

- Section 1 introduces the transportation planning process and the MPO.
- Section 2 discusses the trends that create the existing and future transportation demand.
- Section 3 describes the transportation system.
- Section 4 discusses how the Tri-Cities MPO met each federal requirement that applies to the region.
- Section 5 discusses our goals, objectives and performance measures.
- Section 6 is a financial plan showing how the system can be built and maintained.
- More information is included in Section 7 as appendices.
Section 2 - Tri-Cities Area Socio-Economic Estimates and Projections
Colonial Heights, Petersburg, Hopewell, and parts of Chesterfield County, Dinwiddie County, and Prince George County compose the Tri-Cities Metropolitan Planning Organization. The Tri-Cities study area is in south central Virginia along the I-85, I-95, and I-295 corridors. Other arterial routes serving the area are U.S. I, US 301, U.S. 460, Virginia Route 10, Virginia Route 36, Virginia Route 156 and Virginia

Route 144. The Tri-Cities transportation system is multi-modal with air, highway, rail, transit, pedestrian and bicycle facilities available to residents, visitors and businesses. Figure 2 shows the MPO's planning boundary and location in Virginia. The Tri-Cities Area forms the southern portion of the Richmond, Virginia Urbanized Area. The 2010 U.S. Census population estimate for the Richmond, Virginia Urbanized Area is 953,556 .

Figure 2: Tri-Cities MPO Location and Boundary

Population

The population of the Tri-Cities Area is projected to grow between 2016 and 2040. Most of the growth will be in the counties, with the largest increases expected in Chesterfield County and Dinwiddie County. The expected population for 2040 is 165,370 . This is an increase of 74,355 persons from 2000 and is a growth of about 82% for 60 years or 1.2% per year. Figure 3 shows the population growth for each jurisdiction from 2000 to 2040. The vertical axis is at 2016 (the base year).

Figure 3: Population Change
Figure 4 shows the same information as percentages.

Figure 4: Percent of Population by Jurisdiction
The counties are expected to grow faster than the cities Planning for some modes of transportation must be approached differently in a rural setting than in an urban setting. Special concerns arise when dealing with the elderly 11 IPage
and the physically challenged in the rural areas. This implies more travel demand and greater difficulty meeting the demand using transit.

Table 3: TCMPO Population Growth

Jurisdiction	\% Change	Annual Growth
Dinwiddie	211%	2.7%
Chesterfield	190%	2.9%
Prince George	31%	0.7%
Colonial Heights	12%	0.3%
Petersburg	6%	0.1%
Hopewell	3%	0.1%
Overall	62%	1.2%

Elderly Population

The proportion of elderly' in the Tri-Cities increased steadily from 1960 to 2010. As shown in Figure 5, the percentage population over 65 is higher in the cities than the counties. Between 2000 and 2010, however, the portion of the population that is elderly is increasing throughout the MPO. Chesterfield and Prince George experienced the largest percentage increases for the population 65 years of age and over.

The growing elderly population will need more paratransit or demand response transit services. However the reported demand on PAT's demand response transit service has fallen since 2008 (Figure 38 shows the change in demand response ridership.)

[^0]

Figure 5: Elderly Population by Jurisdiction
Minority Population
The 2010 ethnic makeup by jurisdictions is shown in Figure 6. Petersburg has the largest Tri-Cities Area minority population and Colonial Heights the smallest.

Figure 6: Ethnic Composition by Jurisdiction
Housing
The projected number of dwelling units (DU) for the Tri-Cities Area in 2040 is 94,866 . This is an increase of 21,727 units over the 60,134 units that existed in 2000. As shown in Figure 7. Prince George County and Chesterfield County are expected to absorb most of the new housing

Figure 7: Expected Housing Units by Jurisdiction
As families get smaller the number of persons per dwelling units is falling. In 2012 the average number of people per dwelling unit was 2.61. By 2040 that average is expected to fall to 2.46 persons per DU.

Automobile Ownership

Auto ownership affects transportation planning as it pro vides information on the number of cars that may be using the area's transportation system. Increases in the number of autos in the Tri-Cities may be an indication of increasing traffic and congestion. Transportation plans must be devel oped taking into account the possible number of automobiles available for use in the system. Figure 8 shows the automobile ownership rate for the Tri-Cities area, the historical increase in the number of automobiles is expected to continue to increase. Between the years 2000 and 2040, the number of autos is projected to increase 32,838 over the 2000 figure of 91,015 for an increase of 36.08%.

Figure 8: Tri-Cities MPO Auto Ownership

Employment

Workplaces generate traffic and affect travel demand. Projections of employment can be used to determine the location and timing of future transportation facilities.

Figure 9: Tri-Cities Area Employment

Figure 10 Tri-Cities Employment by Jurisdiction
Most of the jurisdictions are land-locked and without changes in land use policy little job growth is expected. The strongest employment growth appears to be in Prince George County.

Commuting

By 2009 commuting to work accounted for less than twenty percent of travel. However, it is still a driver of demand system demand. According the US Bureau of Census commut ing effectively determines peak demand on the transportation system. The morning traffic report routinely confirms this reality. Furthermore the vast majority of commuters drive alone to work. Figure 11 shows the mode choices of Tri Cities residents between 2009 and 2015 from the American Factfinder Website. The automobile dominates commuting Over 84% of TCMPO commuters drive, alone with another 8.6% carpooling. These rations have been consistent since at least 2009. This agrees well with mode choice in Virginia and the United States as a whole. However, because several jurisdictions are not served by public transportation the percentage of commuters using public transportation is lower than in Virginia and the United States.

Figure 11: Tri-Cities Mode Choice
Figure 12^{2} shows the average commute time for the MPO's jurisdictions and the average commute time for the whole MPO. The average commute time for the MPO has been between 22 and 23 minutes since 2009. This compares favorably with Virginia's average of 27.7 minutes and 25.4 minutes for the United States. Average commutes in Chesterfield County (26.0 minutes) are longer than those for the other jurisdictions. The commute numbers for Chesterfield County includes may probably reflect the congestion associated with Richmond. It is interesting to note that commute times in Colonial Heights, Dinwiddie County and Hopewell have been falling since 2009 while commute times in Ches terfield County, Petersburg and Prince George County are rising.

[^1] Figure 12: Average Commute Time

Section 3 - The Transportation System

Section 3 describes the transportation system to give context for developing the elements of the transportation plan.

The Highway System
The Tri-Cities MPO highway system includes about 1330 miles of Interstates, Principal Arterials, Minor Arterials, Collectors and Local Roads. The Interstate System is defined by statute and the other systems are defined based upon the tradeoff between mobility and accessibility. Interstates, and other freeways, provide high mobility by limiting access to adjacent property. Local roads on the other hand provide limited mobility with high degrees of access to adjacent property. A completed discussion of roadway functional classification may be found at http://www.fhwa.dot.gov/planning/fcsec2 l.htm . The table below profiles the highway system by functional classification and by jurisdiction

Figure 13 shows the capacity of the highway system by juisdiction and functional classification as vehicle miles of
travel. This capacity is a rough estimate of the actual capacity of the system.

Figure 13: Tri-Cities Highway System Mileage
Figure 14 shows the approximate vehicle miles of capacity on each functional classification by jurisdiction.

Figure 14: Vehicle Miles of Highway Capacity
Figure 15 shows the highway system

Figure 15: The Highway System with Points of Interest

Figure 16 shows the percentage of the system's capacity in each jurisdiction by functional classification.

Figure 16: Percent of Capacity in Each Classification
Figure 17 compares peak hour capacity of the highway sys tem with the likely peak travel demand on the system. This simple analysis ignores intersections and interchanges. It also assumes that ten percent (10\%) of daily traffic occurs during the peak time period.

-Capacity \quad Demand

Figure 17: Hourly Capacity vs Hourly Demand

It seems that the highway system is performing well; however, there are local problems and bottlenecks that need to be fixed, as shown in Figures 82 and 83.

The Systemwide demand is about $13,770,000$ vehicle miles of travel per day. This is equivalent to a line of cars stretching from the earth to the moon 57 times. Figure 18 shows the system demand by year between 2004 and 2015. Figure 19 projects the current growth rates out to 2040 showing possible high and low estimates ${ }^{3}$. 2040 the system demand is most likely to be around $17,600,000$ vehicle miles of travel per day. The dark blue cone shows most likely range of future demand. The system does not appear to need much new capacity.

sys-
This
it al-
curs

[^2]
igure 19: Future Travel Demand on the Highway System
Since 2004, travel on the Interstate System has grown at approximately 1% per year. The demand on the Interstate System in the Tri-Cities MPO is approximately 3,750,000 vehicle miles of travel per day. Figure 20 shows the daily demand on the MPO area's Interstates since 2004. The record shows growth around one percent (1\%) per year. However, between 2014 and 2015 VMT grew by four (4) percent per year.

Figure 20: Demand on the Interstate System
Figure 21 shows projected Interstate VMT during life of the transportation Plan. By 2040 the most likely daily interstate
demand is around 4,760,000 vehicle miles of travel per day Since 2004 travel on the Interstate System has grown at ap proximately 1% per year. As a whole the system does no appear to need new capacity. However, three sections o l-85 or l-95 experience congested conditions now and will likely continue to experience congestion into the future. The congested sections are:

- I-95 between the MPO boundary and I-295 (See Fig ure 82 and Figure 83)
- I-85/I95 north south of Wythe Street (See Figure 82 and Figure 83) and
- I-95 north of Temple Avenue (Figure 83)

Figure 21: Future Travel Demand on the Interstate System
The demand on the Primary System in the Tri-Cities MPO is approximately $6,109,000$ vehicle miles of travel per day. Fig ure 22 shows the daily demand on the MPO area's Primar Routes since 2004. The record shows growth around one percent (1\%) per year. However, between 2014 and 2015 VMT grew by six (6) percent.

Figure 22: Demand on the Primary System
Figure 23 shows projected Primary VMT during the life of the transportation Plan. By 2040 the daily primary demand will be around $7,784,000$ vehicle miles of travel per day

Figure 23: Future Travel Demand on the Primary System

Today the demand on the Secondary System in the TriCities MPO is approximately $3,915,440$ vehicle miles of travel per day. Figure 24 shows demand on the Secondary System from 2004 through 2015

Figure 24: Demand on the Secondary System
Figure 25 shows projected values for secondary VMT during the life of transportation Plan. By 2040 the daily secondary demand will be around $5,000,000$ vehicle miles of travel per day. Since 2004 travel on the Secondary System has grown at approximately 1% per year. However, between 2010 and 2014 demand on the secondary system decreased before rebounding in 2015.

$$
\begin{aligned}
& \text { 76-95\% (Optimistic) 51-75\% (Optimistic) } \quad 6-25 \% \text { (Pessimistic) } \\
& 0.5 \% \text { (v. Pessimistic) Average } \\
& \text { - Secondary }
\end{aligned}
$$

Figure 25: Future Demand on the Secondary System

The MPO's most likely needs are relieving bottlenecks and rebuilding outdated facilities.

Much of the roadway infrastructure was emplaced during the second half of the twentieth century: is nearing the end of its design life or does not meet current design standards. The following figures summarize the condition of the highway infrastructure of the jurisdictions in the Tri-Cities MPO.

Bridges are critical, long lived, transportation infrastructure As of 2015 the average age of bridges in the Richmond District was forty-two (42) years. The typical design life of a bridge is fifty (50) years. VDOT's goal is for 94% of bridges to be in good or better condition. Figure 26 shows that 99% of Interstate Bridges and 95.4% of Primary bridges are no structurally deficient.

In three jurisdictions VDOT lists no deficient ${ }^{4}$ interstate bridg es. In the other three jurisdictions only 2% of Interstate Bridg es are deficient. VDOT's goal is for less than six percent (6%) of bridges to be deficient.

Figure 26: Bridge Condition in the MPO

4 A deficient bridge is not necessarily dangerous. Deficient means that at least one rating criterion is not satisfactory
17 \| Page

Figure 27 shows the percentage of Interstate system bridges in the MPO that are not deficient from 2006 through 2016. Since 2006, VDOT has classified approximately 3% of the Interstate bridges in the MPO as either functionally obsolete or structurally deficient.

iigure 27: Interstate Bridge Condition by Jurisdiction
Figure 28 tracks the percentage of Primary system bridges in the MPO that are not deficient from 2006 through 2016. Since 2006, VDOT has classified approximately 8% of the non-Interstate bridges in the MPO functionally obsolete or structurally deficient. Dinwiddie County is notable in that since 2006 18\% its bridges there are deficient compared to VDOT's goal of 6%.

Figure 28: Primary Road Bridges by Jurisdiction
The Benjamin Harrison Bridge may need special attention The fifty year old bridge does not meet current design standards. As shown in Figure 29, it is also a bottleneck and single point of failure for:

- Commuters;
- Highway freight; and
- Marine traffic.

Figure 29: Modal Interactions at the Benjamin Harrison Bridge.
Because it is functionally obsolete it has no provision for bicycles or pedestrians and is a barrier for recreational bicycling or walking between Hopewell and Charles City Coun-
ty. The Benjamin Harrison Bridge is also a notable instance of environmental preservation, or restoration. The bridge towers host nesting boxes for Peregrine Falcons and have resulted in a number of hatchlings (called eyases) since 2003 (Wikipedia).

Figure 30: The Benjamin Harrison Bridge
Figure 31 shows year to year change pavement condition since 2005. Pavement Condition improved from 2010 through 2013 but has fallen since then.

$$
\begin{aligned}
& \text { Interstate } \\
& =3 \text { Yr. Mov. Avg. Int. }
\end{aligned}
$$

3 Yr. Mov. Avg Pri.

VDOT's goal is to have 94% of pavement classified as fair or better. Since 2006, about 77% of Interstate pavement in the MPO has been classified as fair or better. While pavement quality in most of the MPO has improved, pavement in Dinwiddie County has gotten worse since 2011 as shown by the trend line in Figure 32.

Figure 32: Interstate Pavement Condition by Jurisdiction
VDOT's goal is to have 94% of pavement classified as fair or better. Since 2006, about 75\% of Primary Highway pavement in the MPO has been classified as fair or better. Figure 33 shows primary road pavement condition by jurisdiction. Pavement condition in all of the MPOs jurisdictions is below VDOT's goal. Furthermore, primary pavement condition has been worsening since 2013. This implies that the MPO should focus more money on resurfacing across the MPO.

[^3]Transit
The Petersburg Area Transit Authority provides fixed route and demand response transit service from the Multi-Modal Station at 110 E. Washington Street in Petersburg. This facility is a hub and transfer facility for PAT, Greater Richmond Transit System (GRTC) and Greyhound Intercity Bus Lines.

Figure 34: Petersburg Multi-Modal Station
According to the National Transit Database (NTD) PAT serves a seven square miles and a 32,948 people. Figure 37 shows PAT's fixed routes.

In 2014 PAT operated twelve fixed route buses and five demand response vehicles. Then the average age of fixed route vehicles was 5.8 years and the average age of the demand response vehicles was 7.4 years. PAT uses these vehicles to operate thirteen fixed routes for twelve hours each weekday as shown in Figure 35.

Table 4 shows PAT's fare structure.

Table 4: PAT Fare Structure		
Fare Type	Cost	Discount
Regular	$\$ 1.75$	$\$ 0.00$
Senior(s)	$\$ 0.85$	$\$ 0.90$
Day Pass	$\$ 1.75$	$\$ 1.75$
Weekly Pass	$\$ 12.00$	$\$ 6.00$
Monthly Pass	$\$ 44.00$	$\$ 22.00$

In addition PAT has purchased three classic trolley buses as part of the Petersburg National Battlefield Trolley Service to support of Travel and Tourism.

Table 5 shows PAT's reported budgets for 2013 and 2014 from the NTD. Seventy to eighty percent of the capital budget (e.g., buildings and vehicles) is comes from federal sources. For operating (e.g., fuel, salaries and tires) between ten and twenty percent of the budget comes from federal sources. The remainder comes from advertising, fares, local funds or state funds.

Figure 36 shows PAT's fixed route ridership between 2003 and 2015 (the last year of available data in the National Transit Database. Average ridership is about 529,000 riders per year ${ }^{5}$. However, ridership has fallen since 2013^{6}.

[^4]
ifure 36: Yearly Transit Ridership
Figure 37 projects possible ridership for PAT to 2040. The dark blue cone, corresponding to the most likely range of future ridership ranges from 475,000 riders per year to 588,000 riders per year.
\[

$$
\begin{array}{lllll}
840,000 \\
640,000
\end{array}
$$
\]

Figure 37: Projected Fixed Route Ridership
Figure 38 shows the average age of fixed route vehicles since 2004. The average bus age is (7.4 years) within FTA guidelines.

Figure 37 shows the average age of fixed route vehicles since 2004. Currently the average bus age is (7.6 years) within FTA guidelines.

Figure 38: Age of PAT Vehicles
Figure 39 is a control plot showing the PAT demand response ridership from 2003 to 2014. Average ridership is approximately 9,200 riders per year?. However, ridership has declined since 2008.

Figure 39: Historic Demand Response Ridership
Since 2003 demand response ridership has fallen 11,600 riders per year.

Figure 40 shows projects demand response ridership for PAT through 2040. The dark blue cone, corresponding to the

[^5]most likely range of future ridership ranges from 400 to 1,200 riders per year.

Figure 38, above, shows the average age of demand response vehicles since 2004. The average bus age is (5.8 years) within FTA guidelines.

Figure 41 shows the seasonal variation of fixed route ridership based upon the NTD. The monthly information was only available for 2004 through 2011. However, the seasona pattern shows that the best months for ridership are generally March and October while the worst ridership month is typ ically June.

$$
\rightarrow 2004-2005 \cdot 2006 \times 2007
$$

$$
\times 2008 \cdot 2009 \cdot 2010-2011
$$

Figure 41: Seasonal Variation in Ridership

Intercity Bus
Two providers serve intercity bus passengers. GTRC Route $95 x$ provides four round trips daily from Petersburg to Richmond. Route 95X (Figure 42) is an express route that connects downtown Petersburg to downtown Richmond. Greyhound is a private provider serving the continental United States.

Ridesharing Services
The Tri-Cities Area needs to explore alternatives for the provision of mobility manager services. Mobility management is a strategic approach to transportation and customer service. The mobility manager works with public and private agencies to organize a network of available transportation services and share this information with customers. The customer benefits by from 'one stop shopping' for mobility opions, trip prices, and help in choosing the best travel opions.

Fisure 42: GTRC Bus Route 95x to Richmand
Ridefinders, a not for profit affiliated with the Greater Richmond Transit Company (GTRC), provides ridesharing services in the Tri-Cities MPO. Ridefinders' goal is make our transportation system more effective by moving more peo ple in fewer vehicles. To accomplish this goal, Ridefinders

- Helps establish carpools
- vanpools
- transit services, and
- Telecommuting programs

Bicycle and Pedestrian

Sidewalks and multi-purpose trails give users the option of traveling by a mode other than the automobile and provide recreational opportunities and access to open spaces.

In 2016 the Tri-Cities Area MPO updated the regiona bikeway plan (now called 2015 Bicycle, Transit \& Pedestrian Connector Plan). The goal of this plan is to integrate the Bikeway and Pedestrian plan with transit. Linking bicycling transit and walkability improves the quality of life by provid ing safe, convenient and transportation facilities and recreational alternatives.

The plan considers bikeways concepts such as urban and suburban settings, user group skill levels, facility types, such as Shared Use Path (off-street), Bike Lane (pavement mark ings for bicyclists, wide outside lane (additional pavement width with no strips delineating separate lane for bikes), shoulder improvements (use of shoulder area for biking) and ancillary facilities (supporting facilities such as bicycle park ing and lockers). A future bikeway route structure that can be promoted by the localities as a safe and convenient substitute for motor vehicle travel for recreational and commuting has been recommended in the 2015 Bicycle Transit \& Pedestrian Connector Plan. The transit element of the document provides connection that can be used during the journey of biking or walking in the Tri Cities Area recommendation for benches, adequate lighting, and transit route display information.

Figure 44 shows the recommended bikeway improvement in the study area and Figure 35 shows PAT's transit routes

2015 Bicycle, Transit \& Pedestrian Connector Plan Goals \& Objectives: (the complete plan can be found at www.craterpdc.org/

Table 7 summarizes the goals and objectives of the MPO's Bicycle Plan. In addition the proposed Appomattox River Trail is shown on Figure 43 and mentioned under travel and ourism on page 63

For Hire (Taxi) Service
Taxicab and for hire services serve who need more flexibility than is offered by transit services but who cannot or do not wish to use a personal vehicle. These services charge a premium price for this flexibility. The market for "for hire" vehicles has changed rapidly with the advent of ride hailing services such as Uber and Lyft. Table 6, from the Human Services Transportation Plan lists the available taxicab service in the MPO.
Table 6: Private Transportation Providers
 Richmond
Colonial Heights Hopewell

Richmond
Company
Napoleon Taxi offers
20% discount to disabled,
elderly, and vision impaired
Boulevard Cab Co
Marshall Cab LLC
AAA Taxi Co
A Rainbow Taxi Co
Metro Cab Co.
At Your Service

Ettrick portion of Chesterfield County. Amtrak's 2014 rid ership count at Ettrick was 29,286 boarding's and alightings. The Virginia Department of Rail and Public Transit (DRPT) es timates the total Tri-Cities ridership will increase to approxi mately 98,000 passengers per year by the year 2025 with the addition of planned higher speed (79 to 125 mph) passenger rail services. Ten Amtrak trains stop each day at the Ettrick Station. These trains include service connecting to New York and Florida; Charlotte, NC and New York; and Boston, MA and Norfolk, VA. Figure 26 shows the Petersburg Station ${ }^{8}$.

Figure 43: Petersburg Amtrak Station in Ettrick VA
Figure 45 shows passenger boardings and alightings from 2009 to 2015. Average yearly ridership has been nearly 24,800 per year and has increased as service has increased. The rate of growth has been over 6\% per year

Richmond

Richmond, Chester-
field, Chester and
Henrico
Richmond
estern
Goochland, Powha
tan, Louisa, Amelia J\&M Transportation Jervices, LLS
Forward Fleet
Saleh Medical Trans portation, Inc. Sam Transportation LLC Worl Big Ben Taxi Cab

Richmond Taxicab Wheelchair Accessible West End
$393-4432$

Telephone
(804) $536-3546$
(804) 536-3546
(804) 354-8294
804)732-3636
(804) 458-3325 804) 458-3325 804) 862-1108 804) 861-2445 804) 423-9200 804) 737-2693 or 804) $326-6414$ (804) 426-4313 (804) 334-9511
804) 715-9242
(804) 303-9591
804) 393-4432 804) 986-6667
804) 300-9900 (804) 833-1234

Passenger Rail
Amtrak provides passenger service at the Petersburg Station located off Route 36 (Chesterfield Avenue) in the historic
${ }^{8}$ http://www.railfanguides.us/va/petersburg/map1/index.htm\#Map Review Draft 25 Aril 2017

BIKE AND PEDESTRIAN MAP
Bike \& Ped Map
Bike \& Ped Map
Source: TCAMPO
Source: TCAMPO
Mata Range: 2016
Mata Range: 2016
Map; Tr-Cities Area MPO MPO
Map; Tr-Cities Area MPO MPO

--.-- Proposed Facilities

- Points of Interests

Roadways
Water
City/County Limits TCAMPO Boundary

MPO

Launch a Bikeway System in Tri-Cities Area

objective ea
awareness, interest and ideas.

- Use the MPO's Policy and Technical Committees to evaluate nonmotorized issues.
- Create a Bikeway committee to address bicycle needs.
- Follow VDOT's recommended guidelines to establish and imple ment the bikeway system
- Mainstream, bikeway planning and greenway planning into transportation planning.
- Develop a bikeway system that provides access to and among major activity centers, public transportation routes and recreation facilities.
- Give high priority to projects that close gaps in Tri-Cities Area Bikeway Network (especially projects that cross jurisdictional boundaries.
- Encourage bikeways through scenic areas.
- Encourage maintenance and monitoring efforts that support implementation and operation of the Tri-Cities Area Bikeway Network.
- Request VDOT to include bicycle features on all highway construction, where there is support from the locality and the public
- Develop bikeway information graphics that clearly identify bikeways.
- Encourage local jurisdictions to maintain and provide interested citizen with maps of the bikeway system
- Encourage using roadway-maintenance funds to make routes safer for bicyclists by realigning grates, repairing potholes, and making traffic signals more responsive to bicycles, etc
- Develop an off-street bike network integrated with the on-street system.
- Support local government efforts to improve bicyclist safety by encouraging enforcement of the Virginia Vehicle Code for motorists and cyclist alike.
- Encourage investment choices that help achieve the 2040 Long Rang Plan goals of reducing bicyclist fatalities, injuries and crashes by 5 percent from 2000 to 2040.
- Encourage and support the creation comprehensive safety awareness, driver education, cyclist education and diversion training programs for cyclists and motorists.

Encourage using the bicycle as an alter Encourage using the bicycle as an

Objective
Provide bikeway access to and within major trip generators

Plan support facilities and service for bicyclists

Make bicycling and walking safer

Make bicycling and walking safer	Develop a public-awareness program involving bicyclist, mo- torist and pedestrians on the use and safety bikeways.
Increase enforcement of traffic laws for the protection and safety of bicyclists and pedestrians	
Increase awareness of the benefits of bicycling and walking and of available resources and facilities	
Complete a network of sidewalks and trails that serve short trips to employment centers, school, commercial districts, bus stops, and institutions.	
Funding	Develop an equitable and effective regional funding and implementation process.

Policy

- Encourage bicycle connectivity to school and recreational sites.
- Encourage bicycle paths or trails within parks, recreational areas and school sites.
- Connect commercial/educational areas (shopping center, central business district, universities) with nearby residential areas along safe transportation routes
- Encourage localities to establish bikeways that link with major roadways.
- Encourage bicycle-parking facilities in all new employment and commercial developments.
- Encourage bicycle-parking facilities at new apartment complexes, schools, parks, churches, hospitals, public buildings, and other areas of large gatherings.
- Encourage the installation of bicycle-parking in the public right-ofway
- Work with Virginia State University, Richard Bland College and area schools to promote bicycle commuting and assist in siting bicycle parking areas.
- Encourage localities adopting zoning requirements for lockers and showers to be added to new buildings
- Consider requiring bicycle parking at major public events
- Expand the bicycle-safety education program in public schools.
- Use civic clubs and associations, as well as local police and sheriff's departments, for the continuation of bicycle-safety clinics.
- Use mass media (e.g., television, radio and newspapers) to promote a bicycle safety public-awareness program.
- Apply the bicycle safety-enforcement program to children as well as to adults
- Promote citizen participation in planning, encouraging bicycle and pedestrian safety education and public awareness programs
- Market the health benefits of walking and bicycling.
- Complete missing sidewalk connections wherever possible to make direct route for walking.
- Identify obstacles to walking to schools.
- Consider the installation of sidewalks, as part of all transportation improvements.
- Fund bicycle projects to complete the Tri-Cities Area Network
- Consider the benefits of bicycling improvements in the allocation of transportation funding and in developing performance measures including vehicle trip community livability and public health.
- Use Congestion Mitigation and Air Quality (CMAQ) funding for bikeway projects such as bicycle and pedestrian facilities (paths, bike rack, support facilities, etc.)
- Identify new funding sources to support operation and maintenance of bicycle and pedestrian facilities.
- Help local jurisdictions identify research state and federal funding source to help fund bikeways.
- Encourage transit agencies to provide, maintain and promote convenient, secure bicycle parking at transit stops and stations.
- Ensure that bicycles are accommodated on all forms of public transit.
- Foster collaboration between local jurisdictions and regional transit agencies to improve bicycle access to transit station in the last mile surrounding each station.

- Shorten bus headways (the time between buses) on routes with strong ridership.
- Install passenger information systems and other passenger support infrastructure at bus stops (e.g., hardstands, shelter, lighting, seating bus schedules, routes connectivity maps etc.)
- Maintain schedule adherence through operational improvements along arterials that are planned for transit improvements.
- Encourage the PAT riders to use the PAT route schedule app, Route Shout (mobile app)
- Develop or integrate Bicycle and Pedestrian Trails into the mobile app.
(NARP, 2016). This natural increase would double ridership by 2020. However, ridership increases may depend upon service increases since trains were added to the route in between 2012 and 2013

igure 45: AMTRAK Boardings
Figure 46, projects boardings using a Monte Carlo Simulation based upon the previous growth, shows the possibility of achieving a given ridership. Because AMTRAK's load factor9 averaged fifty percent (50\%) in 2014 the existing passenger consists10 only have capacity for around 60,000 passengers per year (Amtrak Revenue Passenger-Miles and Load Factor, 2014). Beyond that number more passengers will need larger trains or more trains ${ }^{11}$.

The recommended alignment for the Richmond to Raleigh High Speed Rail goes through Chesterfield County, Colonial Heights, Petersburg and Dinwiddie County as shown in Figure 47 and 48 reproduced from the Southeast High Speed Rail Richmond, VA, to Raleigh Recommendation Report (NCDOT; VaDRPT, 2012)

Southeast High Speed Rail, Richmond, va to Raleigh, NC
Southeast High Speed Rail, Richmond, VA to Raleigh, NC - Rexumere Fain Cominor - Reors

\square cunnt sannay

0 -1 2^{2} inen
${ }^{0}$ The number of cars in a given train sometimes called a trainset.
${ }^{1}$ A personal conversation with an AMTRAK Conductor indicated that as many as 100 people could board a northbound train in Richmond.
27 |Page

Figure 48: Proposed High Speed Rail Alignment in the MPO - South End
In 2014, the MPO Policy Committee started an environmental study (NEPA) of passenger station sites for a new station to serve the Tri-Cities. The purpose of this study is to:

- identify possible station sites;
- identify environmental impacts of the sites; and
- Select a preferred station location.

The Federal Railroad Administration (FRA) is the lead federal agency and the Crater Planning Development Commission, on behalf of the Tri-Cities MPO, agreed to be a cooperating agency and manage the study. The DPRT and VDOT helped 28 \| Page
fund the study. Work began in August 2014 and a Study Working Group comprised of local, State and Federal agencies was created. The consultant conducted a public meeting in December of 2014 to explain the project purpose and need and the evaluation criteria for station sites. A second public meeting was held in September of 2015 to review preliminary environmental findings regarding candidate station alternatives and to provide opportunity for public comment on recommendations to the FRA.

In August 2015, the consultant provided a preliminary draft environmental assessment document Study Working Group members for review and comment. Comments from agencies, local government and the public were collected, summarized and included in the draft report. The consultant sent the draft report to FRA for review and site selection ${ }^{12}$.

Air Transportation
Two airports, the Richmond International Airport (RIC) and the Dinwiddie County Airport, serve the Tri-Cities MPO.

RIC (Figure 49) is seven miles southeast of Richmond and provides passenger, freight, and military facilities. In 2016 six passenger and three freight carriers served RIC. RIC also provides aviation facilities in support of U.S Army Reserve and Virginia Army National Guard Aviation Units.

RIC is 167 feet (50.9 m) above sea level and has three runways summarized in Table 8.

Table 8: Richmond International Airport Runways		
Runway Direction	Feet/Meters	Surface
$\mathbf{1 6 / 3 4}$	$9,003 / 2,744$	Asphalt
$\mathbf{2 / 2 0}$	$6,607 / 2,014$	Asphalt
$\mathbf{7 / 2 6}$	$6,326 / 1,623$	Asphalt

In 2015 RIC served approximately 99,000 landings/takeoff operations (LTOs), 3.5 million passengers, 58,500 tons of freight and 945 tons of mail.

[^6]

Figure 49: Richmond International Airport
The Dinwiddie County Airport (Figure 50) is a General Aviation airport five miles southwest of Petersburg approximately 192 feet $(58.5 \mathrm{~m})$ above sea level. It has two asphalt runways summarized in Table 9

Table 9: Dinwiddie County Airport Runways		
Runway Direction'4	Feet/Meters	Surface
$\mathbf{0 5 / 2 3}$	$5,002 / 1,525$	Asphalt
$\mathbf{1 4 / 3 2}$	$3,031 / 933$	Asphalt

Change Drivers
This section of the Metropolitan Transportation Plan discusses some technologies that are changing transportation. We hope to identify for decision-makers things that could dramatically change the policy and infrastructure needs of the MPO over the course of the plan. Since the last update of the Metropolitan Transportation Plan at least four new technologies have begun to show up.
${ }^{14}$ The runway numbers indicate the direction of a landing airplane to the nearest 10 degrees. Thus runway 05 has an actual heading of 5° Review Draft 25 Aril 2017

Figure 50: Dinwiddie County Airport
Autonomous Vehicles
Autonomous vehicles are moving from design to reality. Within the past year there have been successful implementation of auto-piloted personal and commercial vehicles. Today there are competing opinions of what autonomous vehicles will bring. The only certainty is that autonomous vehicles will change the business model of personal transportation that has been in effect for the last century. In the twentieth century the business model of personal transportation was that the government provided the infrastructure and the individual provided the vehicle. In developed countries this meant that one of a family's biggest expenses has been transportation. The automobile also affected every aspect of life from location to housing design to urban design (e.g., vehicle parking)
able 10 shows some example speculation about how autonmous vehicles will affect us.

Big Data
The smartphone has changed the world in many ways. One of hose ways is the ability to track the devices as they move across the planning area. This improves our ability to change the way transportation demand is measured

Table 10: Possible Effects of Autonomous Vehicles

	Possible Negative	Possible Benefit
Economy	The Fall of Existing Industries	New Companies take their place
Environment	More emissions	Less emissions
Jobs	Fewer trucking and delivery jobs	More opportunities in new industries
Personal Finances	Cars will be more expensive and	You be able to share a car with several people
Transportation Finance	Lower revenues from fuel tax. Need for new infrastructure	Phasing out older infrastructure
Safety	In the short term there may be more incidents	In the long term incidents may decline
Travel	Short term more delay More vehicle miles of travel	Less delay over time Less vehicle miles of travel
Urban Design	We may need more roads	We may be able to convert parking to other land uses.

Unmanned Aerial Vehicles (Drones)
These are remotely controlled vehicles, usually aircraft. They are used for jobs may not need a pilot, or jobs that require the ability to be onsite for extended periods. In transportation drones will fill four niches. First, they can help monitor and inspect infrastructure. Second they can improve design and environmental data. Third, they can improve our ability to monitor system performance, and finally they may provide 'last mile service for parcel or freight delivery.

Ride Haling Services
Ride haling services (e.g., Uber or Lyft) have become popular. These services can best be described as Smartphone enabled car sharing services. They seem popular with business travelers and others willing to pay a premium for good service. Ride haling services compete with taxicabs and line haul transit services. These services are weakly regulated now and it is un-
clear how the market for them will change as regulators ad dress public concerns.

Shale Oil/Gas
For years the United States has imported the oil needed to fuel its economy. However, US oil production has increased fifty percent (50\%) since 2008. Within five years the United State may be energy independent (Yergin, 2013). Energy independ ence will stabilize energy costs across the economy and ma make U.S. manufacturing more competitive (Zeihan, 2016).

Section 4 - The Scope of Transportation Planning Section 4 shows the MPO's compliance with the requirements of transportation Planning. Paragraph $\S 450.306$ (b) of the Code of Federal Regulations lists eight factors that MPOs mus consider when developing transportation plans. The eigh planning factors are discussed below. The Federal Register ci tation for each factor is included as a subheading for its sec tion.
§450.306(b) (1) Support the economic vitality of the metropolitan area, especially by enabling globa competitiveness, productivity, and efficiency
The cities and counties of the Tri-Cities MPO have benefited from strong transportation infrastructure since their founding ${ }^{15}$. Historically, in south central Virginia, transportation supported agriculture, textiles, and tobacco. Our economy has changed significantly since 1990. As the regional economy changes this region is well placed to become part of the Atlantic logistics gateway into the mid-Atlantic and the Midwest. The drivers for this shift are.

- Changes in shipping patterns caused by the Panama Canal third set of locks;
- Proximity to the Port of Hampton Roads and the Port of Richmond

[^7]- Our location on the I-85/I-95 corridor (significant commuter and freight corridors on the Atlantic Seaboard)
- Our location within the CSX National Gateway to the Tri-Cities MPO (including Collier Intermodal Yard);
- The human capital at the US Army's Logistics Command at Fort Lee and the Commonwealth Center for Advanced Logistics Systems(CCALS);
- The human capital at the advanced manufacturing cluster and the Commonwealth Center for Advanced Manufacturing (CCAM); and
- Logistics/distribution centers for Ace Hardware, Amazon, and Walmart.
Figures 51, 52 and 59 show how well placed the Tri-Cities area is to develop a logistics based economy

40\%

of the U.S. Population lives within a day's drive

55\%

 of the U.S. Population lives within a 750 mile radiusFigure 51: Driving Times from VA.
The Port of Virginia complex at Norfolk and Hampton Roads is a significant driver of Virginia's economy. Figure 52 shows east coast port tonnages for 2009 (Bureau of Transportation Stastics, 2010). By 2015 tonnage at Norfolk had risen from 29.1 million 301 Page
tons per year to almost 71 million tons per year. Fifty-seven percent (57\%) of the cargo at Norfolk is exports. Improving access to the Port of Virginia is important for the economy the TriCities and Virginia.

Figure 52: US Atlantic Port Tonnages-2009
§450.306 (b) (2) Increase the safety of the transportation system for motorized and non-motorized users Transportation related incidents cause pain, suffering, and loss in the United States. In 2010 the National Highway Traffic Safety Administration estimated the total quality of life cost, lost household income, productivity, property damage and environmental consequences of traffic accidents at $\$ 836$ billion.

MPO staff reviewed the National Highway Traffic Safety Administration's information for the MPO planning area. This information allowed the MPO staff:

- Identify transportation fatality trends over time;
- Compare the MPO's jurisdictions with Virginia and the United States; and
- Identify factors contributing to traffic fatalities.

Figure 52 shows highway fatalities in the Tri-Cities MPO from 2010 to 2014; the MPO area averaged 40 traffic fatalities per year over the period. The bars show the fatalities during each year. The standard deviation lines a frame of reference. Based upon Figure 52 traffic fatalities in the Tri-Cities MPO will likely continue at the same level for the foreseeable future.

The Commonwealth's 2011 Strategic Highway Safety plan The Strategic Highway Safety Plan identifies six emphasis areas:

- Alcohol-related;
- Intersections;
- Speeding;
- Unrestrained occupants and
- Young drivers (Virginia 2012-2016 Strategic Highway Safety Plan, 2012).

The Virginia's Strategic Highway Safety Plan lists strategies and actions by emphasis area. The strategies are summarized below.

- Roadway Departure
- Systematically review roadway departure crashes,
- Make systemic improve inadequate or unsafe roadway shoulders,
- Include safety in resurfacing projects.
- Speeding
- Review roadway design and geometry to determine whether it contributes to speeding.
- Develop support for proven countermeasures that can change the safety culture and result in greater acceptance of speed limits, i.e., automated speed enforcement, red light running ...
- Intersections
- Examine intersection design to ensure safety for all users including pedestrians and bicyclists.
- Ensure VDOT policy to consider roundabouts at each intersection upgrade is widely known by regional and local transportation agencies and organizations.

The SHSP also identifies focus areas for each District. The Richmond District's Focus areas are:

- Distracted driving,
- Judicial education
- Safety data, and
- Young drivers.

Figure 53 shows the highway related fatalities in the MPO's jurisdictions from 2010 to 2014.

"Bicycle Fatalifies a Highway Fatalifies „. Pedestrian Fatalities
Figure 53: Fatalities by Jurisdiction
Walking and bicycling make up a small percentage of transportation but they are overrepresented in transportation related fatalities. Of the one hundred ninety-five (195) fatalities in the Tri-Cities Planning Area between 2010 and 201413% are
either pedestrians or bicyclists ${ }^{16}$. Figure 54 shows the transportation related fatalities by mode in the Tri-Cities MPO.

The MPO also performed a correlation analysis to identify common factors that contribute to fatalities within the MPO's planning area. The correlation tables for the Tri-Cities MPO are shown in Appendix C. In the tables darker the color indicates stronger relationships between factors. For example, pedestrian fatalities (0.01) are not related to rollover accidents and are shown in white. However, fatalities are strongly correlated running off the road which has a correlation score of 0.99 . Correlation points out a relationship. It does not show causality. For example bicycling fatalities in the Tri-Cities are correlated with speeding (score 0.91). This implies that motor vehicle speed was a factor in the incident.

Appendix C supports these conclusions:

- Many fatalities involve a speeding vehicle leaving the roadway;
- Most fatalities involve either passenger cars or light trucks;

[^8]- Alcohol is most likely to be associated with passenger car accidents; and
- Heavy trucks are correlated to fatalities in Chesterfield and Dinwiddie Counties.

The information in Appendix C indicates that enforcement and education should form the backbone of the effort to minimize traffic crashes in the Tri-Cities MPO.
§450.306 (b) (3) Increase the security of the transportation system for motorized and non-motorized users The MPO has tried to assess security for common risks and in the context of our current sense of concern.

The most significant security risk is for safe secure truck parking in across the Commonwealth of Virginia and the MPO's service area. The need for truck parking will be discussed in more detail under freight.

Because of the events of the last decade it seems prudent for the MPO to assess risk of an intentional attack on the transportation system. The Federal Bureau of Investigation defines terrorism as the unlawful threat of or use of force of violence against people or property with the intention of coercing society or government (Terrorism). To help assess the threat to transportation from terrorism the MPO analyzed terrorist incidents in the United States that occurred between 1982 and 2014 (Global Terrorism Database). The graphs from that analysis are shown in Appendix D.

It appears that an attack on the Tri-Cities transportation network is unlikely. However, Fort Lee is a potential target. Historically the Tri-Cities MPO has cooperated with Fort Lee's security efforts at the Sisisky and Mahone gates. The MPO will continue to collaborate with Fort Lee on force protection.
§450.306 (b) Increase accessibility and mobility of people and freight
In industrial countries there is significant pressure to separate industrial land use from residential and commercial land uses. This separation means that transportation planning must balance competing needs for accessibility and mobility.

Human Service Transportation
Human services transportation planning is covered under FTA's Section 5310 guidance. The Human Services Transportation plan identifies the transportation needs of individuals with disabilities, older adults, and people with low incomes; provides strategies for meeting those needs; and prioritizes services for mplementation. There are four plan elements:

1. Assessment of available services ;
2. Assessment of the transportation needs of individuals with disabilities and older adults:
3. Strategies,
a. activities, and/or projects to address the gaps between services and needs,
b. identification of opportunities to more efficiently deliver service; and
4. Implementation Priorities.

The MPO is incorporating the 2014 Coordinated Human Services Transportation Plan for the Tri-Cities MPO by reference. The 2014 Coordinated Human Services Transportation Plan is a cooperative effort of The Tri-Cities MPO, the Richmond Transportation Planning Organization and the DRPT. The study was aunched in 2013 and the final report was issued in June of 2014 (KFH Group, 2014). The list of Human Services Transportation Providers is included in Appendix E as Table 18.

The Coordinated Human Services Mobility Plan identified the following strategies for meeting mobility needs:

1. Continue to support and maintain capital needs of existing coordinated human service/public transportation providers.

Figure 55: Highway Crash Rates for the Tri-Cities MPO
2. Increase the availability of demand/response and specialized transportation for seniors, people with disabilities, and people with lower incomes.
3. Find new funding partners to public transit/human service transportation.
4. Expand outreach and information on available transportation options in the region.
5. Improve programs providing travel training to customers, human service agency staff, medical facility personnel, and others.
6. Improve coordination among public transit, private and human service transportation providers.
7. Provide targeted shuttle services to employment opportunities.
8. Use the Veteran's Transportation and Community Living Initiative Program to establish regular trips to the McGuire VAMC.
9. Provide more and more frequent public transportation services.
10. Improve built environment to enable access to available transportation options.
11. Expand access to taxis and private transportation operators.
12. Provide taxicab vouchers, travel training and bus buddies as potential solutions for the transportation dependent.
13. Provide flexible transportation options and more specialized transportation services or one-to-one services using volunteers (KFH Group, 2014).

Freight

Freight is critical to the economy. Colonial Heights, Petersburg, and Hopewell ${ }^{17}$ exist, in part, because of the economics of freight movement in the seventeenth and eighteenth centuries.

The Virginia Multimodal Freight Plan identified nine issues affecting freight movement. The nine issues are:

1. System Performance,
2. System Management,
3. Truck Operations,
4. Rail System Capacity/Modernization,
5. Port Accessibility,
6. Multimodal Connectivity,
7. Land Use and Transportation Coordination,
8. Multistate coordination, and
9. Funding (Cambridge Systematics, 2014).

The Washington to North Carolina Corridor and the Heartland Corridor cross one another in the Tri-Cities MPO. This intersection gives the Port of Virginia access to the mid-Atlantic, the Southeast, and the Midwest.

The Washington to North Carolina (I-95) Corridor
The Washington to North Carolina Corridor (Figure 56) is a critical link in the national freight system and connects producers with users, warehouses and ports all along the east coast. Because of the diverse economies in the corridor about 54% of the freight in the corridor is passing through (Cambridge Systematics, 2014).
VDOT's truck parking study found a shortage of truck parking along the I-95 and I-295 (Kimley Horn, 2015). The MPO has also identified a potential need for truck parking for oversize and overweight loads near the North Carolina state line because of differing regulations on the hours of movement of oversize/overweight vehicles in the Commonwealth and North Carolina (Edwards, 2017).

Figure 56: Washington to NC Corridor (Cambridge Systematics, 2014)
The Port of Richmond (Richmond Marine Terminal) is south of the City of Richmond on the James River on Deep Water Terminal Road (Figure 57). This facility is owned by the City of Richmond and is leased to the Virginia Port Authority (VPA).

In 2009, the Richmond Area Metropolitan Planning Organization gave money to start a barge service from the Port of Virginia to the Port of Richmond. The VPA has been continued this service and expanded it to a three-day per week service) with a goal to expand this service to five days per week.

As volumes increase at the Port of Virginia, the opportunities to shift freight from highway to barge increase. As volumes to the Port of Richmond increase, significant job development opportunities will be created near the Port in the logistics, transportation, and warehousing sectors.

[^9]

Figure 57: Richmond Marine Terminal
The Heartland Corridor
The Heartland (US 460) Corridor runs east to west across the Commonwealth and connects the Port of Virginia to the Midwest. Because the corridor serves as an international gateway about 71% of the freight in the corridor is in transit (passing through). The Heartland corridor crosses the Washington to North Carolina Corridor at Petersburg.

The Port of Virginia is the east end of the Heartland Corridor. The Port of Virginia is a key shipping gateway for the United State and is one of ports at which exports exceed imports (Bureau of Tranpsortation Statistics, 2017/2018).

VDOT's truck parking study identified gaps along the Heartland corridor where there is no truck parking. There are gaps on US 460, without truck parking immediately east and west of the TriCities MPO (Kimley Horn, 2015). Although trucking dominates freight movement rail it is more to move freight long distances. Figure 56 shows rail travel times from the Port of Virginia to the mid-continent rail yards at Chicago, Kansas City and Dallas.

Figure 58: Heartland Corridor (Cambridge Systematics, 2014)
Both CSX and Norfolk Southern are improving their tracks to carry double-stack containers. In 2016 60.6\% of cargo at the Port of Virginia moved by truck, 36.7% by rail and 2.7% by barge (Port of Virginia, 2017). Several yard facilities are in the MPO area as shown in Figures 60,61 and 62.

Graphic Sauree Portof Viginia
Figure 59: Rail Distances from VA (Virginia Advantages: Distribution \& Global Logistics, 2015)

Figure 60 shows the location of the Norfolk Southern Broad Street Yard on Route 36 in Petersburg.

Figure 60: NS Broad Street Yard
Figure 61 shows the Norfolk Southern Automobile Distribution facility off Wagner Road in Petersburg. The 40 acre secure site operates round the clock. It has capacity for sixty (60) rail cars and 1,780 automobile parking spaces (NS Automotive Group, 2008).

Figure 62 shows the CSX Collier Yard near I-85 south of Petersburg.

Figure 62: CSX Collier Yard
Figure 64, following, shows heavy truck flows within the Tri-Cities MPO. Figure 63 shows that freight is moving on I-85, I-95 and I295; facilities intended to carry freight. However, around eighteen percent (18%) of vehicles on US 460 east are heavy trucks indicating a strong movement towards Norfolk. Also about twelve percent (12\%) of traffic on the two-lane Benjamin Harrison Bridge is heavy vehicles.
§450.306 (b) (5) Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns

Protect and Enhance the Environment
The lifetime of the Tri-Cities Area Transportation Plan is 23 years ${ }^{18}$. The recommendations of the planning process are pre-

[^10]liminary. Including a project in the Metropolitan Transportation Plan is an expression of project support by MPO members. Environmental analysis is handled under the National Environmental Policy Act (NEPA) after a project is scheduled for implementation. Figure 63 outlines the project development process.

Figure 63: Project Development
Aside from ambient air quality, offsetting environmental impacts during the long range planning is not required by law. While detailed environmental analysis of the metropolitan plan is not required, MPOs are encouraged to consult with resource agencies when they develop the metropolitan transportation plan.

Interagency consultation provides an opportunity to compare transportation plans with environmental resource plans, identify environmental mitigation options, and opportunities with potential to restore and maintain environmental resources. The Tri-Cities MPO asked the resource agencies listed in Table 19 (Appendix F) to review the draft Metropolitan Transportation Plan as part of the stakeholder involvement process.
In addition to NEPA, Virginia's State Environmental Review Process directs the project-by-project interagency review, study and identification of environmental concerns. Related requirements that typically apply at this stage involve public hearings, environmental permit-processing, and NEPA studies.

Usually, a variety of environmental documentation, permit and mitigation needs are identified and environmental findings are considered and evaluated. Environmental concerns differ by project and location. As environmental studies are conducted and reviewed, mitigation plans are developed and committed to in the project documents. In the end the environmental commitments become part of the project specifications and contracts. Environmental management systems then are used to monitor, and ensure compliance with the environmenta mitigation commitments.

In order of preference environmental work includes:

1. Avoiding impacts by choosing another project or design;
2. Minimizing the impacts by adjusting the project's footprint, employing special features or scheduling work to avoid certain timeframes; or
3. Mitigate the impacts by replacement or substitute envi ronmental resources of equivalent or greater value

Figure 65 shows sensitive species and habitats in relation to the projects in the MTP. Table 11 illustrates each of the natural resources shown on Figure 65. The table gives decision-makers and residents an idea of the natural resources in the planning area. Table 11 is only a guide. During NEPA each project will be studied to ensure the accuracy and completeness of the information.

Table 12 gives examples of avoidance, minimization and mitigation for each regulation that affects transportation projects.

Figure 64: Heavy Truck Flows

ENVIRONMENTAL SENSITIVTY MAP

Figure 65: Environmental Sensitivity Map

Resource	Chesterfield	Colonial Heights	Dinwiddie	Hopewell	Petersburg	Prince George
A. Goldenrod	Yes	Not Reported within the MPO	Not Reported within the MPO	Yes	Yes	Yes
Bald Eagle	Yes	Not Reported within the MPO	Not Reported within the MPO	Yes	Yes	Yes
Barking Tree Frog	Yes	Not Reported within the MPO				
Barratt's Sedge	Not Reported within the MPO	Not Reported within the MPO	Not Reported within the MPO	Yes	Not Reported within the MPO	Yes

41 \| Page

Resource	Chesterfield	Colonial Heights	Dinwiddie	Hopewell	Petersburg	Prince George
Sheep Laurel Sedge	Yes	Not Reported within the MPO				
Shortleaf Sneezeweed	Not Reported within the MPO	Yes				
Slender Nutrush	Not Reported within the MPO	Not Reported within the MPO	Not Reported within the MPO	Yes	Not Reported within the MPO	Yes
Ten Angled Pipewort	Yes	Not Reported within the MPO	Not Reported within the MPO	Yes	Not Reported within the MPO	Yes

Resource	Chesterfield	Colonial Heights	Dinwiddie	Hopewell	Petersburg	Prince George
Tidal Freshwater Marsh 	Yes	Yes	NA	Not Reported within the MPO	Not Reported within the MPO	Not Reported within the MPO
Virginia Thistle	Yes	Not Reported within the MPO	Yes			
Wild Mugwort	Not Reported within the MPO	Not Reported within the MPO	NA	Not Reported within the MPO	Not Reported within the MPO	Not Reported within the MPO

Resource	Key Applicable Requirements	Potential mitigation strategies	Potential mitigation areas for project implementation
Neighborhoods and communities, and homes and businesses	Uniform Relocation Assistance and Real Property Acquisition Policy Act at 42 USC 4601 et seq. Executive Order 12898 (Environmental Justice)	- Avoid	- Choose an alternative that minimizes property takings/relocation
		- Minimize	- Minimize the project's footprint - Select lower design criteria - Use Context sensitive designs solutions for communities (appropriate functional and/or esthetic design features)
		- Mitigate (for homes and businesses in accord with 49 CFR 24)	- Mitigation on-site or in the community - Sound barriers or visual screening
Cultural resources	National Historic Preservation Act at 16 USC 470	- Avoid	- Choose an alternative that avoids the site, district or resource
		- Minimize	- Landscaping for historic properties; - In place preservation for Archaeological Sites - Minimize the project footprint
		- Mitigate	- Excavation and recording for archaeological sites - Use design features (e.g., weathered guardrail, stamped pavement, or street furniture to maintain context) - Relocate or reuse transportation infrastructure for other purposes - Re-purpose rights-of-way (e.g., rails trails)
Parks and recreation areas	Section 4(f) of the U.S. Department of Transportation Act at 49 USC 303	- Avoid	- Cooperative Planning (i.e., ensuring that park master plans include future transportation facilities) - Choose an alternative that avoids the site, district or resource
		- Minimize	- On site screening or on-site replacement of facilities
		- Mitigate	- Replace the affected property - Improve the affected property by adding facilities
	Section $6 f$ of the Land and Water Conservation Act	- Avoid	- Cooperative Planning (e.g., ensuring that park master plans include future transportation facilities) - Choose an alternative that avoids the site, district or resource
		- Minimize	- Minimization the project footprint before required mitigation.
		- Mitigate	- Replace the affected property adjacent to existing (requires replacement with a property with at least the same area and of equivalent use)
Wetlands and water resources	Clean Water Act at 33 USC 1251-1376; Rivers and Harbors Act at 33 USC 403 Chesapeake Bay Act, VA.	- Avoid	- Choose an alternative that avoids the site, district or resource - Choose an alignment that avoids the site, district or resource
		- Minimize	- Choose designs that limit the extent of encroachment into wetlands and riparian buffers - Cross jurisdictional wetlands a their narrowest point - Use bridging to minimize takings of jurisdictional wetlands - Reduce median and lane widths where needed and practical - Use asymmetrical widening (i.e., widen on the side away from jurisdictional wetlands) - Avoid stream relocations - Design outfalls and filters to comply with NPDES requirements - Locate stormwater management structures outside jurisdictional wetlands
		- Mitigate	- In kind replacement at ratios greater than 1:1 - Restoration of damaged wetlands - Recreation of destroyed wetlands - Creation of artificial wetlands

Resource	Key Applicable Requirements	Potential mitigation strategies	Potential mitigation areas for project implementation
			- Replace the property in kind and nearby - Replace the property in kind and offsite - Use mitigation banks to replace the property
Forested and other natural areas	Agricultural and Forest District Act (Code of VA Sections 15.2-4305; 15.2439; 15.2-4313); Open Space Land Act (Section 10.1-1700-1705, 1800-1804)	- Avoid	- Choose an alternative that avoids the site, district or resource
		- Minimize	- Use a context sensitive design approach to minimize the project footprint - Use design exceptions and variances
		- Mitigate	- Replace the property in kind and nearby - Replace the property in kind and offsite - Use mitigation banks to replace the property
Prime and Unique Farmland	Farmland Protection Policy Act of 1981 at 7 USC 4201-4209, Agricultural and Forest District Act (Code of VA Sections 15.2-4305; 15.2-4307-4309; 15.2-4313)	- Avoid	- Choose alignments that avoid the impact
		- Minimize	- Use a context sensitive design approach to minimize the project footprint - Use design exceptions and variances
		- Mitigate	- Replace the forestry operation within existing agricultural/forestal district replacement property for open spaces easements to be contiguous with easement - Landscaping within existing rights of way; - Environmental compliance monitoring
Threatened and Endangered Species	Endangered Species Act at 16 USC 15311544	- Avoid	- Choose alignments that avoid the impact - Memoranda of Agreements for species management;
		- Minimize	- Time of year restrictions; construction sequencing - Minimize footprint using design exceptions and variances; - Environmental compliance monitoring
		- Mitigate	- Relocation of species to suitable habitat adjacent to project limits - Develop habit(s) on transportation right-of-way and structures(e.g., nesting sites on bridge structures)
Air Quality	Clean Air Act at 42 USC 7401-7671, and Conformity regulations at 40 CFR 93	- Avoid	- Voluntary shifts to other modes - Clean Fuel \& Alternative Fuel Vehicles
		- Minimize	- Alternative Fuel program - transportation emission reduction measures
		- Mitigate	- Transportation control measures

Promote energy conservation
The reasons to conserve energy are simple:

- money used to purchase fuel is not available for other purposes,
- The demand for energy contributes to the need to import energy,
- Wasted Energy Contributes to a large greenhouse gas footprint.

According to the United States Energy Information Administration, the United States used 97.72 quadrillion British Thermal Units Quad Btus) of energy in 2015. Transportation is the second largest energy user in the United States. Only the Industrial Sector uses more energy than transportation. Despite advances in battery technology, the transportation sector depends upon liquid fuels. Figure 66 shows the energy use by economic secto for 2015. As shown in the tab le transportation used 27.72 quads of energy or 28.6%. Because most transportation is fossil fue based this means that transportation is a big oil user and a big contributor to greenhouse gas emissions
$\left.\begin{array}{|r|r|}\hline 100 \% \\ 90 \% \\ 80 \% \\ 70 \% \\ 60 \% \\ 50 \% \\ 40 \% \\ 30 \% \\ 20 \% \\ 10 \% \\ 0 \%\end{array}\right]$

Figure 66: Energy Use by Economic Sector
Figure 67 shows how much transportation in the Tri-Cities MPO area contributes to our greenhouse gas footprint.
47 \| Pag

$$
\text { CO2 Emissions (TPY) —— UCB }-\cdots- \pm \delta \delta- \pm \delta-\quad-\quad \text { LCB }
$$

Figure 67: Tri-Cities MPO Tailpipe CO2 per Year
As shown in Figure 68 the MPO can encourage fuel efficiency in: vehicle fleets, vehicle fuels, operations \& maintenance and travel.

Figure 68: Energy Efficiency Paths of Influence
USDOT studied the transportation related to energy conservation and greenhouse gas reduction. The MPO believes that the
measures USDOT suggests are beneficial because of more than energy conservation or emissions reductions.

Vehicles and Fleets
More efficient motor vehicles and fleets are critical in conserving fuel, lowering transportation's environmental footprint and meeting our economic goals. Since 1970 fleet fuel economy ris en from twelve (12) miles per gallon to Seventeen and one-half (17.5) miles per gallon. This is an improvement of 0.94% per year. The new Corporate Fuel Economy (CAFE) standards should re sult in a 31% reduction in carbon dioxide emissions across the United States. For smaller MPOs that are growing slowly the CAFE standards will save energy because fuel economy is improving faster than travel is growing (David T. Hartgen, M Gregory Fields, Adiran Moore, 2011)

Vehicle efficiency means different things for different vehicle types as shown in Table 13. Because vehicle strategies nationally, the MPO has mentioned them only for completeness.

Table 13: Fuel Efficiency Strategies for Vehicle

	Weight Re- duction	Hybridization /Electrification	Aerodynamic \backslash Improvement
Passenger Cars	Yes	Yes	Yes
Buses	Yes	Yes	No
Heavy Trucks	No	Maybe	Yes

Fuels
Transportation has focused energy conservation on travel and fuel because they are the most obvious to us. The goal is to move from 100 percent fossil fuel to 100 percent renewable electric. There are several steps along this route:

1. 100 Percent Fossil Fue
2. Fuel Blends
a. Ethanol Blends
b. Bio-Diesel Blends
3. Hybrid Vehicles
4. Fuel Cell Vehicles
5. Electric Vehicles.

The MPO has supported Clean Fuels by funding a clean fue conversion project using CMAQ money.

Operations and Maintenance
Figure 69 shows a typical roadway construction and mainte nance lifecycle. The lifecycle offers opportunities to reduce en ergy consumption by using different methods or materials.

Figure 69: Typical Roadway Lifecycle
Each phase of transportation operations has many opportuni ties to conserve energy and eliminate greenhouse gas emis sions. A complete treatment of these opportunities is beyond the scope of the transportation plan. However, a concise source of information is FHWA's Carbon Estimator Final Report and User's Guide (Frank Gallivan, Eliot Rose, James Choe, Scott Williamson, Jack Faucett, Jeff Houk, 2014).

Travel

Figure 70 shows TTl's estimate of the extra fuel used in the Rich mond Urban Area because of congestion. Energy conservation benefits from congestion reduction and quality improvement Reducing delay by implementation projects from the Conges tion Management Process (CMP) is part of the Tri-Cities MPO's strategy to save energy.

Improve the quality of life
Congestion

Figure 71: Hours of Delay per Person
Air Quality
USEPA designated the Richmond Metropolitan as attainment for the eight-hour ozone standard on May 29, 2007. The Tri-Cities MPO as part of the Richmond Metropolitan Region is also classified as attainment for ozone, and all other criteria pollutants.

The National Ambient Air Quality standard for ozone is that the average of the fourth highest hour of the year, for three consecutive years, must below the ozone standard ${ }^{19}$. Figure 10 shows the most recent monitoring data for the Tri-Cities MPO collected by the Virginia Department of Environmental Quality. Figure 72 shows five years of ozone values for the four monitoring stations covering the Tri-Cities MPO. The data for 2010 are included to show the downward trend in ozone values for the Tri-Cities area. The figure shows the ozone standard in light blue t also shows the variability of ozone measurements in the TriCities area based upon the twelve values that EPA would use to make a designation. The information presented in Figure 10 leads to the following conclusions.

1. Current ozone values in the Tri-Cities MPO are below both the 2008 ozone standard and the stricter 2016 standard;
2. Because 99% of ozone values are below 69 parts per bil lion (ppb) it is unlikely that a single ozone season will resul is designation to nonattainment.

figure 72. Ozone Trend in tricities MPD

[^11]$$
\text { Review Draft } 25 \text { Aril } 2017
$$

Promote consistency between transportation improvements and State and local planned growth and economic development patterns
Figure 73 shows the land use and transportation feedback loop. Because each influences the other they must be considered together.

Figure 73: Land Use Transportation Cycle
Transportation decisions impact land use and development and must take these plans into consideration. Transportation and land use plans must be coordinated to ensure that the benefits accompanying a new transportation project are not negated by inconsistent land use along the improvement corridor. Coordination between land use and transportation is a necessity to create and maintain strong communities.

Land Use and Comprehensive Planning in the Tri-Cities Area
Local governments have authority over land use in Virginia. The Code of Virginia defines their authority, and the tools available to them to control land use. The land use and transportation tools available are listed alphabetically with a short summary.

- Capital Improvement Programs

Local capital improvement programs include information on the schedule and financing for public facilities needed to support land development over a five-year period The Petersburg and Hopewell capital improvement programs include consideration of redevelopment of existing areas.

- Comprehensive Plan

Each local government in the MPO study area has a comprehensive plan. Comprehensive Plans guide growth and development. They outline a jurisdiction's long-term development plan and define the goals and objectives for achieving the desired level of land use and development. According to Title 15.2 of the Code of Virginia, the plan must be reviewed at least every five years.

- Official Maps

An official map may be prepared and used to indicate future location of transportation facilities and utilities. Local governments are required to consult with State agencies regarding facilities under their purview and to submit the official map for review. The official is useful coordinating State and local plans along transportation corridors

- Site Plan Reviews

Site plan review process may be established and used by a locality to require land developers to submit a visual plan for developing land parcels. The site plan indicates the location of the parcel to be developed, existing and proposed roadways, drainage, vegetation and other factors pertinent to how the development of the parcel will meet applicable requirements of local land development ordinances.

- Subdivision Ordinances

Subdivision ordinances regulate land parcel division to promote orderly development consistent with local goals. These ordinances include standards for lot size and specifications for infrastructure needed to support land development.

- VDOT Review

In 2012 session the Virginia General Assembly, approved legislation requiring local and regional transportation plans to be reviewed by Virginia Department of Transportation for consistency with the State transportation plan and Six-Year Improvement Programs.

- Zoning Ordinances

Local governments are authorized to enact zoning ordinances to implement the land use and other elements of
he comprehensive plan. Zoning ordinances separate the land area within a jurisdiction into different zones and specifies the type of land use activities permitted. The in tent of zoning is to promote an arrangement of compat ble land uses that benefit the entire community by separating incompatible land uses.

Access Management

Access management controls the number, spacing and type of entrances to roadways. The purposes of access management are to maintain mobility, minimize vehicle conflicts and improve safety for the traveling public.

The Virginia General Assembly has authorized VDOT to implement access regulations to:

- Reduce congestion;
- Improve safety by reducing traffic conflicts
- Reduce the need for new roadway capacity;
- Promote the efficient movement of goods and people;
- Preserve public investments in highways; and
- Ensure that private property receives reasonable access to highways.
VDOT's access management regulations apply to State maintained highways. The access management rules address:
- Spacing (entrances, intersections, median openings and traffic signals);
- Safe location of entrances (relative to intersection turning movements and from interchange ramps):
- Providing vehicular and pedestrian circulation between adjoining properties; and
- Sharing highway entrances.

oint Land Use Study

Fort Lee, home of the US Army's Logistics command, is one of the Department of Defense's major east coast training facilities. Like many Army facilities created to support World War I (e.g. Fort Belvoir, Fort Bragg) what was originally a rural landscapes has changed to a more urban or suburban landscape. Fort Lee has also benefited from the Base Closing and Realignment

$$
\text { Review Draft } 25 \text { Aril } 2017
$$

BRAC) process. It added missions, commands and staff. Fort Lee contributes $\$ 2.4$ Billion and 28,000 jobs to the local econo my. In response to the BRAC process the Tri-Cities region, includ ing Fort Lee, instituted the Joint Land Use Study. The study found that:

- Most of Fort Lee's operational impacts are contained within its boundaries;
- Fort Lee is surrounded by strong boundary features; and
- Fort Lee and the region have compatible growth patterns.

The recommendations of the Joint Land Use Study are:

- Formalize communications and land use coordination between Fort Lee and the surrounding communities;
- Develop a regional Geographic Information Systems da tabase to monitor land use changes around Fort Lee;
- Inform the public of the location of noise, safety and other impacts related to Fort Lee's Mission:
- Local governments are encouraged to adopt Comprehensive Plan Amendments supporting the JLUS study recommendations;
- Fort Lee should regularly update its impact assessments to ensure the sustainability of its training mission.

Rural Transportation Program

Developing a transportation plan for the rural portion of the Crater Planning District was undertaken by a joint effort of VDOT, CPDC and rural localities in PDC \#19 and completed in 2011. The program is currently conducting prioritization to identi fy the most important projects. VDOT will use the rural plan as a foundation for identifying Interstate and Primary system priorities for the Six-Year Improvement Program. The plan is also useful to counties and their respective Residency Administrator when developing the Secondary Six-Year Program. More information can be found at www.craterpdc.org/transportation/rural.htm.
By coordinating with the rural program, the Tri-Cities MPO is better able to provide a safe and efficient transportation system connecting the Tri-Cities with jurisdictions outside of the metropolitan area. The Crater Planning District provides staff support
to the Rural Transportation Technical Assistance Committee which includes staff contacts from Dinwiddie, Greensville, Prince George, Surry, Sussex, Emporia, the Virginia Department of Transportation, Virginia Department of Rail and Public Transportation and the Federal Highway Administration. This group coordinates the rural transportation planning process with the TriCities Area MPO transportation planning process.

In addition to preparation of a rural transportation plan, this program provides technical assistance including:

- Coordination with local governments, project consultants and VDOT regarding the development of a transportation plan for the City of Emporia;
- Coordination with High Speed Rail Studies in the Southeast High Speed Rail and Route 460 corridors;
- Transportation project specific mapping;
- Development monitoring along the U.S. Route $460 \mathrm{im}-$ provement project corridor
- Transportation planning assistance as requested by local governments; and
- Assistance to the Virginia Department of Transportation in the development of a Statewide Plan and Six-Year Improvement Program.

Environmental Justice Assessment of the Transportation Plan Figures 65 through 77 are the basis of the environmental justice assessment of the Metropolitan Transportation Plan. The maps show the concentration or distribution of:

- minority populations (Figure 74)
- employment (Figure 75),
- zero vehicle households (Figure 76),
- limited English proficiency (Figure 77),
- percent of persons in living poverty (Figure 78),
- percent population over 65 years old (Figure 79), and
- percent of persons with disabilities (Figure 80).

Each figure also shows the transit routes and other proposed projects.

ZERO VEHICLE HOUSEHOLDS

ZERO VEHICLE HOUSEHOLDS
Source: TCAMPOUS Census
Data Range: 2010
Map: Tri-Cities Area
Mapi Tn--Citites Area MPO
Design by: Tri-Cities Area MPO

LIMITED ENGLISH PROFICIENCY

N-

Figure 77: Limited English Proficiency

PERSONS LIVING IN POVERTY

POPULATION OVER 65

Figure 79: Population Over 65

PERSONS WITH DISABILITIES

Figure 80: Persons with Disabilities
§450.306 (b) (6) Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight
Monitoring growth and travel patterns; maintenance a trave forecasting model; establishing a Congestion Management Process; using Intelligent Transportation Systems; implementing transportation improvements promote system efficiency.

§450.306 (b) (7) Promote efficient system manage-

 ment and operationFederal transportation planning rules require the application of processes for the Tri-Cities Area. The intent of these processes is to assemble information on the performance of the transportation system to support future statewide and regional transportation planning for existing and future facility improvements.
The Federal Highway Administration (FHWA) defines a CMP as:
"... a systematic process that provides information on transportation system performance and alternative strategies to allevi ate congestion and enhance the mobility of persons and goods. A CMP intify alternative actions assess and implement ostefe, idention actions, and cost-effective actions, and evaluate the effectiveness of im plemented action."
Congestion is the level of demand at which performance is no longer acceptable because of traffic interference. The CMP identifies roadway segments where congestion has occurred or is forecasted to occur and suggests strategies to relieve the traffic congestion.
The components of a CMP are:

1. Application Area

Transportation System Definition
Performance Measures
Data Collection and System Monitoring
dentification and Evaluation of Proposed Strategies Implementation of Strategies
7. Evaluation of the Effectiveness of Implemented Strat egies

Congestion Management Strategies include:
a. Transportation Demand Management

Carpooling, vanpooling, alternate work hours, telecommuting, parking management, congestion pricing, growth management and land use planning, trip reduction ordinances
b. Traffic Operational Improvement Intersection and road widening and other improvements to existing facilities, HOV facilities, traffic surveillance and control systems, traffic signal improvements, traffic redirection (see Appendix C for information on existing efforts in traffic operational improvement practices)
c. Public Transportation and Non-traditional Modes Exclusive rights-of-way, new and/or expanded transit opportunities, park and rides, intermodal transfer facilities, traffic signal preemption, fare reductions, transit information systems, new and/or expanded bicycle and pedestrian facilities
d. Intelligent Transportation System Technology (ITS)
e. Additional Roadway System Capacity

The MPO revised its Congestion Management Process in 2016 updating much of the data and refining earlier work. Figures 82
and 83 show the current (2016) and short term congestion (2020) on the roadway system during peak periods, are outputs of the process. The figures use eighty percent (80%) of the hourly capacity as the basis for identifying congested roadways. The data is consistent with earlier work and comparing Table 14 (Po tentially Congested Roadways) with the projects outlined in the transportation plan and in the 2018 to 2021 TIP (a separate product) shows that the MPO is working to fix congested areas.
§450.306 (b) (8) Emphasize the preservation of the existing transportation system
The transportation infrastructure is a significant investment of public funds, an investment that is difficult to maintain because of the demands upon the system and the funds available to maintain it. The condition of the transportation system is discussed in detail in Section 3. Both demands on the system and the condition of the system are discussed there. Based Section three the MPO should set the following priorities:

1. Focus on resurfacing to improve pavement condition,
2. Focus on replacing functionally obsolete bridges, and
3. Use new construction to eliminate bottlenecks.
§450.306 (b) (9) Improve the resiliency and reliability of the transportation system and reduce or mitigate storm water impacts of surface transportation
Since Hurricane Floyd, in 1999, there have been at least four hur ricanes resulting in significant flooding and damage to transporfation infrastructure. To plan these events it is important to un derstand the physical geography, geology and hydrology that influences the effect of weather its effects on this region. Therefore, a brief, general description of some critical elements of our physical environment follows, as well as the history of and the propensity for future hurricane activity.

Figure 82: 2014 Volume Capacity Ratios

Figure 83: 2020 Volume Capacity Ratios
601 Page

Table 14: Potentially Congested Roadways

Facility Type	Jurisdiction	Route	Start	End	Length (miles)	Cross Section (number of lanes)	2014 AADT	2014 VMT	2014 Peak Hourly Flow Rate (vehi- cles/hour	$\begin{aligned} & \hline 2014 \text { V/C } \\ & \text { Ratio } \end{aligned}$	$\begin{aligned} & \hline 2020 \\ & \text { AADT } \end{aligned}$	2020 VMT	2020 Peak Flow Rate (vehi- cles/hour)	$\begin{aligned} & 2020 \\ & \text { V/C Ra- } \end{aligned}$ tio
Freeway	Prince George County	I-95	Warwick Swamp	NB Off Ramp @ US 301	2.17	4	40,321	87,497	4,959	0.82	42,794	92,863	5,263	0.87
		1-95	NB Off Ramp @ US 301	$\begin{aligned} & \text { SB On } \\ & \text { Ramp I-95 } \end{aligned}$	1.38	4	42,931	59,245	5,108	0.76	46,647	64,373	5,551	0.83
	Colonial Heights	1-95	Temple Ave. Ramp	NCL Colonial Heights	2.38	6	95,926	228,304	9,593	0.80	104,201	247,998	10,421	0.87
	Petersburg	I-95	$\begin{aligned} & 0.25 \mathrm{mi} . \\ & \text { North of } \mathrm{I}-85 \end{aligned}$	Mingea St. OP	0.09	4	87,555	7,880	7,968	0.95	95,193	8,564	8,659	1.03
Urban Arterial	Chesterfield County	East Hundred Road	Rte. 746	$\begin{aligned} & \text { RTE I-295 } \\ & \text { Ramp } \end{aligned}$	0.90	4	28,214	25,393	3,301	0.94	30,660	27,594	3,587	1.02
		Temple Avenue	Prince George CL	ECL Colonial Heights	0.19	4	32,593	6,193	3,194	0.85	35,418	6,729	3,471	0.92
	Prince George County	Temple Avenue	ECL Colonial Heights	Puddledock Rd. (Rte. 645)	0.59	4	32,593	19,230	3,194	0.85	36,148	21,327	3,542	0.94
		Temple Avenue	Puddledock Rd. (Rte. 645)	Route 36	1.99	4	32,593	64,860	3,194	0.85	34,148	71,935	3,542	0.95
	Hopewell	Oaklawn Boulevard	WCL Hopewell	Jefferson Park Rd	0.52	4	34,590	1,7987	3,079	0.92	35,840	18,637	3,190	0.95
		Oaklawn Boulevard	Jefferson Park Rd	Rte. I-295	0.22	4	33,293	7,324	3,296	0.95	33,414	7,351	3,308	0.95

Although the hurricanes experienced in Virginia are usually weaker, they can bring torrential rainfall that is more devastating than the hurricane. Floods account for nearly 70 percent of presidentially declared disasters and are the deadliest form of natural disaster. FEMA lists five factors that determine the scope of local flooding:

1. Watershed size,
2. Development within the watershed affecting storm water runoff,
3. Soil characteristics,
4. Topographic characteristics affecting the flow and direction of floodwaters, and
5. Regional climate (Allison Boyd, J. Barry Hokanson, Laurie A. Johanson, James C. Schwab, Kenneth C. Topping, 2014).

Topography

Figure 84 shows Fall Line in Virginia (Ries, 1906), running through the middle of the Crater Planning District, and the MPO, creating two provinces, the Piedmont and Coastal Plain. Generally speaking, the Coastal Plain consists of low-lying land near sea level (<200 feet) and the Piedmont Province consists of higher land where elevations vary between 200 and 350 feet 60 to 100 meters). Chesterfield County and part of Dinwiddie County lie within the Piedmont. The other jurisdictions in the MPO lie below the Fall Line. East of the fall line flood events may be sharp bur are often of longer duration and may spread broadly across the Coastal Plain. West of the Fall Line flood events will be shorter, sharper, and confined to stream valleys and narrow flood plains.

Hydrology

The MPO lies in the Appomattox sub-basin of the James River Basin and averages approximately 46 inches of rain annually.
The land around the James River Basin is flat to moderately rolling with elevations rising to about 200 feet (61 m). The Appomattox sub-basin drains 1,344 square miles ($3,480 \mathrm{~km} 2$). The confluence of the Appomattox River and the James River is just east of Hopewell where it flows toward the Atlantic with flood plains stretching widely around shallow streams.

Hydrology cannot be discussed without also including the type of soil found beneath the streams. Many of the 150 underlying soil types are composed of clay.

Figure 84: The Fall Line

Hurricane and Floods
A tropical storm becomes a hurricane when maximum winds reach or exceed 75 miles (approximately 120 kilometers) per hour. According to the U.S. Geological Survey, Louisiana, Florida and North Carolina are at a particular risk, but parts of Virginia also fall into the high and even highest hurricane activity categories.
Typically the storms reaching the Virginia coast have weakened as they have moved, north, towards colder water. The most likely storm surge would be one to three feet, with a worst-case scenario bringing eight to ten feet, according to the Wakefield Weather Office (2001).

Hurricane Cycles
Figure 85 shows the history of Atlantic hurricanes since 1916. Global weather, such as the Pacific Ocean El Nino and La Nina influence the number and strength of hurricanes.

Figure 85: Atlantic Hurricanes (1916-2015)
These cycles occur from two to seven years apart. During El Nino, warm waters flowing through the equatorial region of the Pacific create a rippling effect that causes strong westerly winds in the upper atmosphere to rip apart hurricanes. As a result, hurricanes are fewer and father between. During the alternate La Nina phase, in the Pacific waters are colder, resulting in a dramatic rise in hurricane activity. For instance, during the La Nina cycle of 1954-1956, the Eastern Seaboard experienced destruction from such storms as Hazel, Connie, Diane and Flossy.

00 Year Flood Map of the Tri-Cities MPO Based upon previous experience (Hurricane Floyd in 1999) the MPO could expect to see many road closings, pavement dam age, and bridge or culvert damage from major flooding. Figure 56 shows the 100 year flood plains (Figure 86) around the MPO. The shows that I-95, US 450 and Route 10 may be vulnerable to flood damage in the event of a major rain event such as Hurricane Floyd. North Carolina's experience with Hurricane Floyd (1999) and Hurricane Matthew (2016) show that these concerns are valid.

Figure 86: 100 Year Flood Map

Recommendations

Based upon earlier work the MPO has five recommendations for improving the resiliency of the transportation system. The recommendations are:

1. Keep a Current Detailed Emergency Operation Plan
2. Keep Accurate and Detailed Road Closure Reports
3. Keep Digital Flood Plain Maps Current
4. Keep Drainage Ditches Cleared
5. Flood Proof Roads, Especially Hurricane Evacuation Routes (Crater Planning District Commission, 2001).
§450.306 (b) (10) Enhance travel and tourism
The travel and tourism requirement was added to the Federal Register in 2016. The Tri-Cities MPO serves the southern part of the Richmond Urban Area. Because of its role in American histo63 |Page
ry, natural resources, and location in the I-85/I-95/I-295 Corridor there is significant opportunity for the Transportation System to contribute to and enhance travel and tourism. Projects intended to enhance Travel and Tourism include:

- Building the Appomattox River Trail along the floodplain of the Appomattox River (See the Bicycle and Pedestrian Map Figure 44);
- Renovate the historic Southside Depot as a visitors center for the Petersburg National Battlefield;
- Providing (through Petersburg Area Transit) trolley service to the Petersburg National Battlefield and other historic sites;
- Improve wayfinding signage to historic sites in the MPO service area;
- Establish a Bike Share program; and
- Connect the Appomattox River Trail, through Hopewell, to the Virginia Capital Trail. Figure 87 shows the Virginia Capita Trail north of the James River to illustrate the importance of the connection to travel and tourism.

Figure 87: Virginia Capital City Trail
§450.316 Participation of Interested Parties The Public Participation Plan (PPP) guides the TCAMPO public outreach strategies Effective transportation planning recognizes the critical link between transportation and other goals.
23 CFR § 450.326 (b) requires that MPOs give interested parties the opportunity to comment on the proposed TIP. Tri-Cities MPO has a stakeholder involvement process intended to ensure that all interested parties can see and comment upon the proposed

TIP. The current Stakeholder Involvement Plan is included as part of the 2015 Title VI Plan Update approved by the MPO's Policy Committee in August 2015. As required by our stakeholder involvement plan the MPO's Technical Advisory Committee and the MPO's Policy Board meet at handicapped accessible locaions located near transit routes. The Technical Advisory Committee meets at the Colonial Heights Public Library (off PAT's Down town Trolley Route) and the Policy Committee meets at the PAT Transit Center. The meetings of both groups are open to the public. Meeting times, locations and agendas are shared with the media so that they may attend the meetings and inform their readership of transportation projects.

Appendix A is a comment log summarizing comments received from stakeholders the MPO's response(s). The purposes of this og are to:

1. Document comments received by the MPO,
2. Ensure that the Policy Board is aware of comments re ceived,
3. Form a part of the administrative record for projects, and
4. Share that information with planning partners

The MPO may respond to a comment by:

1. Implementing the comment, in whole or in part
2. Refer the comment to another document or forum; or
3. Note receipt the comment without action.

If the MPO receives multiple comments with the same sub stance the MPO may include the basic summary of the com ment and the number of times the comment was received

The Draft Transportation Plan made available to the public after the Policy Board Meeting of \qquad , 2017. Physical copies of the draft document were placed in public libraries, member jurisdiction planning departments, and the Crater Planning District Commission Office. Electronic notification of the TIP was provided on the MPO's Facebook Page and on the MPO's Website The availability of the TIP for public comment was advertised at the media outlets listed in Appendix C. Example copies of the paid advertisements are included in Appendix C. Also the Hopewell News, Progress Index, and Richmond Times Dispatch
receive electronic meeting notifications that included copies of draft and preliminary products.

The MPO routinely interfaces with resource agencies and other planning entities. The MPO Technical Advisory Committee includes advisory members from Human Services Transportation Providers, the Department of Defense and the National Park Service. In addition other resource agencies were asked to review and comment in the draft transportation plan. Summaries of their comments are included in the comment log and a list of the resource agencies asked to comment is included in Appen$\operatorname{dix} A$.
The Public Participation Plan and Title VI Plan can be found
on the MPO's (http://www.craterpdc.org/transportation/title_vi.htm).

Section 5 - Metropolitan Transportation Goals, Objectives and Performance Measures
Implementing projects from this plan is intended to improve the economic, environmental and social well-being of the Tri-Cities MPO. The performance targets and performance measures discussed below are intended to give the MPO objective measures of their success.
Transportation Goals, and Objectives
This transportation goals and objectives were developed under the direction of the Tri-Cities Area Transportation MPO and Technical Committee to determine the purpose and need for transportation improvement projects listed in the Transportation Plan update and for compliance with federal transportation performance measures. The goals and objectives reflect community values and complement local comprehensive development plans. Further, others may use this statement as an indication of the public interest when performing legislated responsibilities.

Performance Measures
As required by the FAST Act, and Virginia Statute, the Tri-Cities MPO monitors land use and transportation performance measures. The MPO staff reports them each year to policy
board. The previous performance reports are on the MPO's webpage (www.craterpdc.org/transportation/mpo.htm). The first report was completed in October 2011. The MPO finds performance measures to be most useful when they give the following information:

- Context
- Status,
- Trends and,
- Direction.

When this information is available the Policy Board and stakeholders it improves decision-making.
While we support performance measures, there are limitations of time and money that make performance measures hard to implement in a small MPO. To meet the goals of the statute and the regulation the MPO has chosen to rely upon public data sources rather than to develop an independent data collection effort. Table 15 shows the performance measures from 2010 through 2015. The most recent data is 2015. At this writing there is no information available later than 2015. Although some data is available as long ago as 2004 the earlier information has many gaps. Thus the MPO made a decided to show the information only to 2010. The MPO collects performance information at the lowest feasible level so some measures refer to several lines of Information. General goals or trends for each performance were endorsed by the MPO Policy Board in May 2012.

Table 15 is organized to help the user find information as easily as possible. Going from left to right it includes the performance dimension, a description of the measure, the geographic scope of the measure and the source of the information and the valves of the information by year.

There are six performance dimensions: Economy, Quality of Life, Reliability, Safety, Sustainability and System Preservation. The dimensions are subjective, but group the information reasonably.

The description describes the performance measure including the units the information is collected in.

The MPO has collected data from many national sources. We believe these sources to be reliable. However, because the sources have different points of view they may have different geographic scope. The scope of the data is useful in deciding which pieces of information can be meaningfully compared. The scope of the data ranges from jurisdiction to regional. Whenever possible the MPO needs data collected at the jurisdictional level. This allows us to aggregate the data upward to MPO or regional level.

The MPO has chosen not to specify goals at this time to avoid conflict with other agencies. Our approach is to use the goals set by our partner agencies for those performance measures that we have collected data for. We have chosen to use control plots as our basis for analysis and communication because they give staff and decision makers much more information than just comparing this year's information with an arbitrary goal. Many of the figures in this report are control charts that help us know where we were; where we are, and where we are headed. In some cases we have also simulated where we are headed using Monte Carlo Simulations. We believe doing this informs staff, residents and decision-makers on what we can expect in the future and helps them better allocate scarce resources.

Table 15: Tri-Cities MPO Performance Measures

Year										
Dimension	Description	Scope	Source	2010	2011		2012	2013	2014	2015
Economy	Dollars- Air	Richmond UA	BTS	0.00	0.00		732.98	715.01	679.12	674.97
	Dollars- Rail	Richmond UA	BTS	0.00	0.00		425.75	481.14	869.03	892.21
	Dollars- Truck	Richmond UA	BTS	0.00	0.00		59005.80	58931.66	59319.74	59468.14
	Jobs Served by PAT	MPO	PAT	29,000		29,972	29,972	29,972	29,972	
	Persons Working Inside the Jurisdiction	Chesterfield	Bureau of Census	0.00	0.00		0.00	0.00	0.00	0.00
		Colonial Heights	Bureau of Census	2,095		2,095	2,095	2,095	2,095	2,095
		Dinwiddie	Bureau of Census	3,585		3,585	3,585	3,585	3,585	3,585
		Hopewell	Bureau of Census	2,095		2,095	2,095	2,095	2,095	2,095
		Petersburg	Bureau of Census	5,197		5,197	5,197	5,197	5,197	5,197
		Prince George	Bureau of Census	7,180)	7,180	7,180	7,180	7,180	7,180
	Persons Working Outside the Jurisdiction	Chesterfield	Bureau of Census	-		-	-	-	-	
		Colonial Heights	Bureau of Census	5,985		5,985	5,985	5,985	5,985	5,985
		Dinwiddie	Bureau of Census	7,729		7,729	7,729	7,729	7,729	7,729
		Hopewell	Bureau of Census	5,985		5,985	5,985	5,985	5,985	5,985
		Petersburg	Bureau of Census	7,979		7,979	7,979	7,979	7,979	7,979
		Prince George	Bureau of Census	8,763		8,763	8,763	8,763	8,763	8,763
	Ratio of Jobs by Place of Work to Households at the Transportation Study Area and Jurisdictional Levels	MPO	Bureau of Census	1.00	1.00		1.08	1.00	1.08	
	Regional Linear Jobs-Households Dissimilarity Index (0.0 to 1.0)	MPO		0.00	0.90		0.89	0.90	0.89	
	Registered Vanpools	MPO	Richmond Ridefinders	29	56		41	56	41	0
	Tons - Air	Richmond UA	BTS	0.00	0.00		5.61	5.55	5.18	5.12
	Tons - Rail	Richmond UA	BTS	0.00	0.00		2374.07	2437.46	2792.50	2520.30
	Tons - Truck	Richmond UA	BTS	0.00	0.00		39914.82	41163.78	42789.17	42080.64
	\% Jobs Served by PAT	MPO	PAT	0.49	0.49		0.49	0.49	0.49	
Quality of Life	Daily Vehicle Miles of Travel Per Capita on Arterials	Richmond UA	TTI	10.20	10.20		10.00	9.60	9.50	0.00
	Daily Vehicle Miles of Travel Per Capita on Freeways	Richmond UA	TTI	12.10	12.10		11.80	11.70	11.70	0.00
	Households Served by PAT	MPO	PAT	-		13,534	55,000	55,000	55,010	
	Walk to Work	Jurisdiction	Bureau of Cen-	0.00	0.00		0.00	0.00	0.00	0.00

65 \|Page

67 |Page

68 | Page

Year									
Dimension	Description	Scope	Source	2010	2011	2012	2013	2014	2015
	Bridge Condition \% Not Deficient -Primary	Chesterfield	VDOT	97.81\%	98.46\%	97.67\%	97.66\%	97.64\%	96.88\%
		Colonial Heights	VDOT	92.32\%	92.76\%	93.08\%	93.83\%	94.11\%	94.30\%
		Dinwiddie	VDOT	78.26\%	78.26\%	78.26\%	82.61\%	77.27\%	82.61\%
		Hopewell	VDOT	92.32\%	92.76\%	93.08\%	93.83\%	94.11\%	94.30\%
		Petersburg	VDOT	92.32\%	92.76\%	93.08\%	93.83\%	94.11\%	94.30\%
		Prince George	VDOT	96.43\%	96.43\%	82.29\%	96.43\%	92.00\%	92.59\%
	\% of Projects Delivered on Time	Chesterfield	VDOT			44.00\%	86.00\%	89.00\%	82.00\%
		Colonial Heights	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Dinwiddie	VDOT			60.00\%	75.00\%	100.00\%	100.00\%
		Hopewell	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Petersburg	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Prince George	VDOT			50.00\%	67.00\%	100.00\%	100.00\%
	\% of Projects Delivered on Budget	Chesterfield	VDOT			78.00\%	93.00\%	100.00\%	100.00\%
		Colonial Heights	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Dinwiddie	VDOT			80.00\%	100.00\%	100.00\%	100.00\%
		Hopewell	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Petersburg	VDOT			0.00\%	0.00\%	0.00\%	0.00\%
		Prince George	VDOT			100.00\%	100.00\%	100.00\%	100.00\%
	Fleet Age-Demand Response	MPO	NTD	9.70	7.00	5.80	10.10	5.80	
	Fleet Age-Fixed Route	MPO	NTD	7.00	8.00	9.10	6.00	7.40	

Section 6 - §450.324(f) (11) the Financial Plan

The financial plan ensures that a transportation plan can built and maintained. Section 6 describes the steps that the MPO has taken to ensure that we can build the projects in the plan.
It is important, for a transportation plan, to explain how transportation improvements are identified, selected and funded. This section of the report summarizes project selection, funding programs and expected funding.
Project Prioritization
Often, transportation plans have presented capital costs for recommended improvements without identifying enough revenue to build and maintain the project. Under federal transportation planning guidelines, MPOS, transit operators and state transportation agencies must identify reasonably available funding for planned transportation improvements the financially constrained metropolitan transportation plans. In the Tri-Cities, 38 candidate projects were prioritized for the 2040 metropolitan plan based on the following criteria:

- Support the Economic Vitality of the Metropolitan Area;
- Increase the Safety and Security of the Transportation System;
- Increase the Accessibility and Mobility Options Available to People and for Freight;
- Protect and Enhance the Environment, Promote Energy Conservation, and Improve the Quality of Life;
- Enhance the integration and Connectivity of the Transportation System;
- Promote Efficient System Management and Operation; and,
- Benefit/Cost.

The MPO divided the funding stream into four phases:

1. 2017 to 2022 (matching the 2017 to 2020 MTIP),
2. 2023 to 2028 ,
3. 2029 to 2034, and
4. 2035 to 2040 .

Figure 88 shows the interactive process of assigning projects to a band. At first project were rank ordered. Because there is not enough money to build all the projects in the transportation plan and because project costs may not match the funding bands the project list for each funding band was adjusted to use as much money as possible during a phase. Any projects unfunded at the end of the process were included as vision projects. A vision project may be built as priorities change, or additional funds are identified. The projected revenue allocations and cost estimates are shown in Table 12. Each project has a unique identifier number and shown on Figure 2 (above). Each project is consistent with regional transportation goals, objectives and performance measures listed in Section 5.

Project Scoring

Revised Schedule
Proposed Project Schedule

Financial
Constraint?
Figure 88: Fiscal Constraint Cycle
Funding Programs
The transportation programs and funding streams discussed below are all reasonably available to the MPO.

Congestion Mitigation and Air Quality (CMAQ) Program
Virginia sub-allocates Federal and State funding the Tri-Cities MPO under the Congestion Mitigation and Air Quality (CMAQ) Program. The purpose of the CMAQ program is fund transportation projects that reduce motor vehicle emissions carbon monoxide, ozone precursors, or fine particulates. The MPO has used CMAQ money to fund programs like the Ozone Alert Program, a Ridesharing, traffic signalization improvements, traffic flow im-
provements and a transit demonstration projects. Candidate projects are submitted by local governments and regional agencies and prioritized by MPO. Rating criteria include volume to capacity improvement and benefit cost ratio. All CMAQ projects must meet federal requirements including a reduction in motor vehicle emissions. Presently, the MPO receives approximately $\$ 1.6$ million in federal and State CMAQ funds each year.
Regional Surface Transportation Program (RSTP) Program
Virginia also sub-allocations approximately $\$ 2.7$ million each year in federal and State RSTP funds to the MPO. The RSTP program provides funding to MPOs serving urban areas over 200,000 in population for regionally prioritized transportation improvement projects. Local and regional agencies identify candidate projects and the MPO prioritizes them for the program. The RSTP program is very flexible. The MPO can use RSTP for any project that is eligible for federal transportation funding. Candidate projects are prioritized using the same criteria used for the long-range transportation plan.

Smart Scale

Per legislation adopted by the Virginia General Assembly several years ago, a new method was devised by the Commonwealth Transportation Board for selecting transportation improvement investments. This prioritization program is called Smart Scale. The intent of Smart Scale is to use a data-driven process to select projects for transportation investments. The Smart Scale process is transparent and accountable. Smart Scale does not apply to funding programs with established prioritization processes, such as CMAQ, RSTP, TAP and the State safety improvement program.

Six Year Improvement Program
The Six-Year Improvement Program (SYIP) is a State list of planned transportation investments, including road construction, public transportation programs, and transportation studies over the next six-years. Each year the Commonwealth Transportation Board (http://www.ctb.virginia.gov) endorses the SYIP as it fulfills allocates transportation funds under the Code of Virginia. Funding priorities are updated annually in the SYIP based on the results of the most recent Smart Scale prioritization; MPO pri-
oritization for CMAQ, RSTP and Regional TAP projects; public comments, and consideration by Commonwealth Transportation Board (CTB) membership.

Transportation Alternatives Program (TAP)
The Tri-Cities MPO also receives approximately $\$ 150,000$ each year for the transportation alternatives program (TAP). Eligible TAP projects on and off-road pedestrian and bicycle facilities; projects that improve non-driver access to public transportation; environmental mitigation of transportation facilities; and, safe routes to school. Candidate projects are submitted annually by local governments and prioritized by the MPO using the following criteria:

- Clarity and completeness
- Problem solving
- Safety
- Readiness for implementation
- Ability to administer provision for all project phases and percentile rank of State TAP score.

Examples of TAP projects Tri-Cities include restoration of the Petersburg Union Train Station; sidewalk improvements and streetscape enhancements.

VTrans 2040

VTrans 2040 is Virginia's multi-modal transportation plan. This process establishes principals for investments for future transportation infrastructure and services. There are two parts of VTRANS. The Vision Plan and the Multi-modal Transportation Plan (VTMP). The Virginia Office of Intermodal Planning and Investment (OIPI) is responsible for developing VTRANS 2040. Only projects that help address needs identified in VTRANS 2040 are eligible for funding under the State Smart Scale prioritization process.

Available Funds

The Tri-Cities MPO has worked cooperatively with VDOT and VDRPT to develop a financial plan allowing the transportation plan to be implemented and the existing transportation system to be kept in good repair. The financial plan is based upon the
financial projections prepared by VDOT and VDRPT. However the funding estimates shown here are not guaranteed.

In preparing the financial plan the MPO made the following assumptions:

1. That we should account for inflation;
2. That nominal funding would match the projections provided by VDOT and BDRPT.

Figure 89 shows the nominal funding stream the MPO expects to receive to 2045.
\$65,000,000
\$55,000,000
\$45,000,000 \$35,000,000
\$25,000,000
 Figure 89: VDOT Estimate of Nominal Dollars to 2045
Figure 90 shows the effect of inflation to 2040. The dashed line shows the revenue projection prepared by VDOT. The solid line shows the likely effect of inflation on revenues over the same period. Assuming the revenue projections are accurate the actual purchasing power will be 74% of the same money today.
\$60,000,000
\$50,000,000 \$40,000,000 $\$ 30,000,000$ $\$ 20,000,000$ $\$ 10,000,000$

$\$ 0$	2022	2028	2034
2016	2040		
VDOT Projection (Nominal \$)			

Finally, Figure 91 shows the inflation adjusted funding stream along with an estimate of likely variability of funding based on historic data.

Figure 91: Estimate of Constant Dollars Available to 2045
Table 16 is a summary of the financial projection divided into four categories based upon restrictions in VDOT's financial projections. The full financial projections are included in Appendix G. O\&M includes three funding categories used to maintain and operate the roadway system. These categories are Local Maintenance Funds, State Maintenance Funds and State of Good Repair funds. Unrestricted funds include any funding that can be used for construction of new roads, used for environmental projects, non-highway projects, or transit. Other funds cover administering the program.

	$\begin{aligned} & \text { TIP: } 2017- \\ & 2022 \end{aligned}$	$\begin{aligned} & \text { Period 2: } \\ & \text { 2023-2028 } \end{aligned}$	$\begin{aligned} & \text { Period 3: } \\ & \text { 2029-2034 } \end{aligned}$	$\begin{aligned} & \text { Period 4: } \\ & \text { 2034-2040 } \end{aligned}$
O\&M	\$ 143,867,252	\$ 154,023,141	\$ 151,876,112	\$151,320,154
Unrestricted	\$ 8,362,959	\$ 45,126,379	\$ 39,483,322	\$ 35,136,065
Other	\$ 5,823,161	\$ 5,755,897	\$ 5,897,786	\$ 6,081,129
Transit	\$ 27,368,000	\$ 23,181,000	\$ 19,634,000	\$ 16,630,000
Total	\$ 185,421,368	\$228,086,417	\$ 216,891,220	\$209,167,348

Table 17: Prioritized Project List

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	то	LeNGTH	EXIS COND :LANE	EXISting TRAFFIC/PASS VOL	$\begin{aligned} & \text { EXISTING } \\ & \text { V/C } \end{aligned}$	FUTURE TRAFFIC/PASS VOL	future V/C	ESTIMATE	\cos	/USER
139	CF	RECONSTRUCT BRANDERS BRIDGE ROAD FROM LONG CREEK LANE TO TOOLEY DRIVE AS A tWO-LANE ROAD WITH SHOULDERS AND DITCHES.	RECONSTRUCTION	BRANDERS BRIDGE ROAD	LONG CREEK LANE	TOOLEY DRIVE	1.3	TWOLANE ROAD	2,400	0.09	3200	0.12	\$15,500,000	\$	6,458
133	CF	REALIGN BESSIE LANE/EAST RIVER ROAD INTERSECTION WITH GRANGER STREET AND RECONSTRUCT THE ENTIRE LENGTH OF BESSSIE LANE FROM EAST RIVER ROAD/GRANGER STREET TO THE TERMIN.	ACCESS MAN-AGEMENTIMPROVEMENTS	BESSIE LANE/EAST RIVER ROAD	GRANGER STREET	BESSIE LANE/EAST RIVER ROAD	0.1	TWOLANE ROAD	660	0.2	870	0.25	\$1,072,500	\$	1,625
132	CF	CONSTRUCT A NEW 2- LANE ROAD 2.3 MILES) FROM HAR- ROWGATE ROAD TO ROUTE 1).	NEW CONSTRUCT	$\begin{aligned} & \text { HARROWGATE } \\ & \text { ROAD } \end{aligned}$	NORTH-SOUTH ARTERIA	(WEST OF BRANDERS BRIDGE ROAD	2.3	TWOLANE ROAD	N/A	N/A	N/A	N/A	$\begin{array}{r} \$ 84,000,000 \\ (\$ 30,000,000 \\ \text { to come } \\ \text { from local or } \\ \text { private } \\ \text { sources) } \end{array}$	N/A	
132	CF	LAKEVIEW ROAD/BRANDERS BRIDGE ROAD INTERSECTION IMPROVEMENT	INTERSECTION IMPROVEMENT	$\begin{aligned} & \text { LAKEVIEW } \\ & \text { ROAD } \end{aligned}$	BRANDERS BRIDGE ROAD	$\begin{aligned} & \text { LAKEVIEW } \\ & \text { ROAD } \end{aligned}$	0.4	TWOLANE ROAD	8,000	0.11	10,600	0.21	\$3,500,000	\$	438
129	CF	WOODPECKER ROAD/SANDY FORD ROAD INTERSECTION IMPROVEMENT	INTERSECTION IMPROVEMENT	$\begin{aligned} & \text { WOODPECKER } \\ & \text { ROAD } \end{aligned}$	WOODPECKER ROAD	$\begin{aligned} & \text { SANDY FORD } \\ & \text { ROAD } \end{aligned}$	0.3	TWOLANE ROAD	6,500	0.1	8,600	0.11	\$3,000,000	\$	462
127	CF	RECONSTRUCT WOODPECKER ROAD FROM JOHN WINSTON JONES PKWY. TO SANDY FORD ROAD AS ATWOLANE ROAD WITH SHOULDERS AND DITCHES.	RECONSTRUCTION	$\begin{aligned} & \text { WOODPECKER } \\ & \text { ROAD } \end{aligned}$	JOHN WINSTON JONES PKWY	$\begin{aligned} & \text { SANDY FORD } \\ & \text { ROAD } \end{aligned}$	1.1	TWOLANE ROAD	6,000	0.16	8,000	0.28	\$13,534,400	\$	2,256

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	то	LENGTH	EXIS COND :LANE	EXISTING TRAFFIC/PASS VOL	ExISTING V/C	FUTURE TRAFFIC/PASS VOL	future V/C	ESTIMATE		T/USER
127	CF	RECONSTRUCTMATOACA ROAD FROM WEST OF WOODPECKER ROAD TO HICKORY ROAD AS A TWO-LANE ROAD WITH SHOULDERS AND DITCHES.	RECONSTRUCTION	$\begin{aligned} & \text { MATOACA } \\ & \text { ROAD } \end{aligned}$	WOODPECKER ROAD	HICTORY ROAD		TWO- LANE ROAD	6,000	0.26	8,000	0.35	\$14,300,000	\$	2,383
127	CF	RECONSTRUCT CHESTERFIELD AVENUE FROM MAIN STREET TO JAMES STREET TO PROVIDE A SEPARATE 8'-WIDE TWO-WAY BICYCLE TRACK ON THE NORTH SIDE.	RECONSTRUCTION	CHESTERFIELD AVE	MAIN STREET	JAMES STREET		TWOLANE ROAD	7,000	0.33	9,200	0.37	\$15,000,000	\$	2,143
127	CF	WIDEN N. ENON CHURCH ROAD FROM ROUTE 10 TO BERMUDA HUNDRED ROAD (0.7 MILE) fROM TWO LANES TO FOUR LANES.	WIDENING	ENON CHURCH ROAD	ROUTE 10	BERMUDA HUNDRED ROAD		TWOLANE ROAD	6,600	0.85	9,000	0.85	\$5,600,000	\$	848
126	CF	RECONSTRUCT BRANDERS BRIDGE ROAD FROM NORTH OF WHITEHOUSE ROAD TO LONG creek lane as a TWO-LANE ROAD WITH SHOULDERS AND DITCHES.	RECONSTRUCTION	BRANDERS BRIDGE ROAD	WHITEHOUSE ROAD	LONG CREEK LANE		TWOLANE ROAD	2,400	0.09	3,200	0.1	\$9,400,000	\$	3,917
125	CF	CONSTRUCT NEW STATION AND PLATFORM TO ACCOMMODATE FUTURE TRACK EXPANSION IMPROVE PARKING AND ON-SITE CIRCULATION, PROVIDE PEDESTRIAN AND BICYCLE FACILITIES ONSITE.	RAIL	$\begin{aligned} & \text { ETTRICK STA- } \\ & \text { TION } \end{aligned}$	A	N/A	N/A	N/A	30,000	N/A	98,000	N/A	\$9,000,000	\$	300

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	0	LENGTH	EXIS COND :LANE	EXISTING TRAFFIC/PASS VOL	EXISTING V/C	FUTURE TRAFFIC/PASS VOL	FUTURE V/C	ESTIMATE		ST/USER
116	CF	CONSTRUCT SIDEWALK ALONG NORTH STREET AND WILLIAMS STREET TO IMPROVE PEDESTRIAN ACCESS TO THE TRAIN STATION.	SIDEWALKS	NORTH STREET	NORTH STREET	WILLIAMS STREET	0.2	TWOLANE ROAD	60	N/A	63	N/A	\$780,000	\$	13,000
115	CF	WIDEN ROUTE 10 FROM I-295 TO BURGESS ROAD (1 MILE) FROM FOUR LANES TO SIX LANES.	WIDENING	RT. 10	1-295	BURGRESS ROAD	1	FOURLANE ROAD	28,000	0.31	35,000	0.4	\$19,542,600	\$	698
114	CF	WIDEN ROUTE 10 FROM BURGESS ROAD TO POINT OF ROCKS ROAD 1.2 MILES) FROM FOUR LANES TO SIX LANES.	WIDENING	RT. 10	BURGRESS ROAD	POINT OF ROCKS ROAD		FOURLANE ROAD	24,000	0.59	32,000	0.68	\$25,014,528	\$	1,042
145	CF	WIDEN ROUTE 10 FROM POINT OF ROCKS ROAD TO THE HOPEWELL CITY LIMITS (1 MILE) FROM FOUR LANES TO SIX LANES.	WIDENING	RT. 10	POINT OF ROCKS ROAD	HOPEWELL CL	1	FOURLANE ROAD	21,000	0.59	28,000	0.61	\$10,250,000	\$	488
134	CF	CONSTRUCT SIDEWALK ALONG SOUTH (ETTRICK) STREET AND JAMES STREET TO IMPROVE PEDESTRIAN ACCESS TO THE TRAIN STATION.	SIDEWALKS	SOUTH STREET (ETTRICK)	SOUTH STREET	JAMES STREET	0.2	TWOLANE ROAD	130	N/A	135	N/A	\$875,000	\$	6,731
133	CF	WIDEN WOODS EDGE ROAD FROM KAIROS ROAD TO INDIAN HILL ROAD (0.6 MILE) FROM TWO LANES TO FOUR LANES.	WIDENING	WOODS EDGE ROAD	KAIROS ROAD	INDIAN HILL ROAD	0.6	$\begin{aligned} & \text { TWO- } \\ & \text { LANE } \\ & \text { ROAD } \end{aligned}$	15,000	0.51	20,000	0.64	\$5,600,000	\$	373
122	CF	CONSTRUCT SIDEWALK ALONG THE WEST SIDE OF ROUTE 1 FROM WHERE IT CURRENTLY ENDS AT WHITEPINE ROAD TO MILHORN STREET TO IMPROVE PEDESTRIAN ALONG THE CORRIDOR.	SIDEWALKS	RT. 1	WHITEPINE ROAD	MILHORN STREE	1.5	FOURLANE ROAD	19,500	0.33	25,000	0.4	\$3,200,000	\$	164

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	то	LENGTH	EXIS COND :LANE	EXISting TRAFFIC/PASS VOL	ExISTING V/C	FUTURE TRAFFIC/PASS VOL	future V/C	ESTIMATE		USER
130	CF	CONSTRUCTION OF 5'-WIDE CONCRETE SIDEWALK ALONG THE EAST SIDE OF harrowgate road, FROM HARROW DRIVE TO NORTH STREET; CONSTRUCTION OF 5' WIDE CONCRETE SIDEWALK ALONG THE WEST SIDE OF HARROWGATE ROAD, FROM COUGAR TRAIL TO DOGWOOD AVENUE; AND PEDESTRIAN IMPROVEMENTS TO THE SOUTH SIDE OF COUGAR TRAIL FROM CARVER MIDDLE SCHOOL TO HARROWGATE ROAD.	SIDEWALKS	HARROWGATE ROAD	HARROW DRIVE	NORTH STREET	0.45	TWO- LANE ROAD	10,000	0.35	13,000	0.4	\$647,220	\$	65
120	CF	CONSTRUCT SIDEWALK ALONG NORTH SIDE OF EAST RIVER ROAD FROM DUPUY AVENUE TO CHESTERFIELD AVENUE TO IMPROVE PEDESTRIAN ACCESS TO VSU, THE TRAIN STATION AND CHESTERFIELD AVENUE.	SIDEWALKS	EAST RIVER ROAD		CHESTERFIELD AVENUE		FOURLANE ROAD	18,000	0.52	24,000	0.6	\$780,000	\$	43
134	CH	IMPROVEMENTS TO THE RAMP/INTERCHANGE AREA AT I-95 AND SOUTHPARK BOULEVARD (EX. 53)	RECONSTRUCTION		1-95 (RAMP/INTERCHANGE)	SOUTHPARK BOULEVARD	N/A	FOURLANE ROAD	87,901	0.87	126,057	0.96	\$32,480,000	\$	370
134	CH	RECONSTRUCT LAKE- VIEW AVE FROM VANCE AVE WEST TO CITY LIMITS	RECONSTRUCTION	LAKEVIEW AVE	VANCE AVE	WCL	0.63	TWOLANE ROAD	7,319	0.58	8,608	0.68	\$4,247,100	\$	580
134	CH	RECONSTRUCT INTER- SECTION AT TEMPLE AVE (RT. 144) AND BOULEVARD (RT. 1/301).	RECONSTRUCTION	TEMPLE AVE (RT. 144)	TEMPLE AVE (RT. 144)	BOULEVARD (RT. 1/301)	N/A	FOUR- LANE ROAD	27,045	0.69	39,164	0.99	\$6,525,000	\$	241

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	то	LENGTH	EXIS COND :LANE	EXISTING TRAFFIC/PASS VOL	EXISTING V/C	FUTURE TRAFFIC/PASS VOL	future V/C	ESTIMATE		/USER
133	CH	CONSTRUCT TWO NEW TRAVEL LANES (ONE EASTBOUND ONE WESTBOUND) ON TEMPLE AVE FROM I-95 EAST TO CITY LIMITS	NEW CONTRUCTION	TEMPLE AVE	1-95	ECL	1.15		32,617	0.8	47,234	1.15	\$13,475,700	\$	413
126	CH	RECONSTRUCT BOULEVARD (RT. 1) FROM JAMES AVE NORTH TO CITY LIMITS	RECONSTRUCTION	$\begin{aligned} & \text { RT. } 1 \text { (BOULE- } \\ & \text { VARD) } \end{aligned}$	JAMES AVE	NCL	1.95	FOURLANE ROAD	24,138	0.63	28,385	0.8	\$54,098,625	\$	2,241
123	CH	RECONSTRUCT BRANDERS BRIDGE ROAD FROM BOULEVARD WEST TO CITY LIMITS	RECONSTRUCTION	BRANDERS BRIDGE ROAD	RT. 1 (BOULEVARD)	WCL		TWOLANE ROAD	5,770	0.35	7,237	0.43	\$1,496,000	\$	259
122	CH	RECONSTRUCT CONDUIT AVE FROM TEMPLE AVE TO LYNCHBURG AVE	RECONSTRUCTION	CONDUIT AVE	TEMPLE AVE	LYNCHBURG	0.7	TWOLANE ROAD	19,144	0.55	22,549	0.55	\$1,496,000	\$	78
119	CH	RECONSTRUCT HAMILTON AVE FROM TEMPLE AVE TO BOULEVARD	RECONSTRUCTION	HAMILTON AVE	TEMPLE AVE	BOULEVARD		TWOLANE ROAD	2162	0.12	3842	0.22	\$4,104,000	\$	1,898
132	DIN	REALIGN (IMPROVE ROAD GEOMETRY) DUNCAN ROAD (ROUTE 670) APPROXIMATELY 1 AND $1 / 2$ MILES SOUTH OF THE RT. I/DUNCAN RD. INTERSECTION	REALIGNMENT	DUNCAN RD(RT. 670)	DUNCAN RD(RT. 670)	RT. I/ DUNCAN RDINTERSECTION	1.5	TWOLANE ROAD	954	0.04	1908	0.08	\$1,363,600	\$	1,429
126	DIN	REALIGN (IMPROVE INTERSECTION GEOMETRY) INTERSECTION OF NAMOZINE ROAD (ROUTE 708) AND RIVER RD. (RT. 601)	REALIGNMENT	NAMOZINE ROAD (ROUTE 708)	NAMOZINE ROAD (ROUTE 708)	$\begin{aligned} & \text { RIVER RD. (RT. } \\ & 601 \text {) } \end{aligned}$	N/A	TWOLANE ROAD	2,188	0.08	3830	0.15	\$1,826,250	\$	835
122	DIN	WIDENING RT. 1 (BOYDTON PLANK RD.) FROM I-85 EXIT 63B NORTH/NORTHEAST TO THE PETERSBURG CITY LIMITS.	WIDENING	RT. 1 (BOYDTON PLANK RD)	I-85 EXIT 63B NORTH/NORTHEAST	PETERSBURG CL	4	FOUR- LANE ROAD	14,464	0.4	19,586	0.54	\$8,622,080	\$	596
118	HW	I-295 ACCESS RAMPS W/SOUND BARRIERS	NEW CONTRUCTION	1-295	RIVER ROAD	NCL	N/A	FOURLANE ROAD	35,592	0.34	47,819	0.49	\$45,370,500	\$	1,275

TOTAL SCORE	JURISDICTION	PROJECT DESCRIPTION	TYPE	FACILITY NAME	FROM	0	LENGTH	EXIS COND :LANE	EXISTING TRAFFIC/PASS VOL	$\begin{aligned} & \text { EXISTING } \\ & \text { V/C } \end{aligned}$	FUTURE TRAFFIC/PASS VOL	FUTURE V/C	ESTIMATE		T/USER	
136	PG	WIDEN I-95 FROM THE PETERSBURG SCL TO THE SOUTHERN MPO BOUNDARY	WIDENING	1-95	PETERSBURG SCL	SOUTHERN MPO BOUNDARY	N/A	FOURLANE ROAD	30,903	0.29	38,831	0.36	\$81,251,560	\$	2,629	
121	PG	WIDEN I-295 FROM THE I-95 / I-295 INTERCHANGEINPRINCE GEORGE TO THE HOPEWELL SCL	WIDENING	1-295	I-95/I-295 IN PG	HOPEWELL SCL		FOURLANE ROAD	32,592	0.34	47,819	0.49	\$175,206,720	\$	5,376	
140	PG	U.S. ROUTE 460 CORRIDOR IMPROVEMENT PROJECT (RECONSTRUCTION 4 LANES)	RECONSTRUCTION	US-460	RT. 630 (BULL HILL RD)	PG SOUTHERN MPO BOUNDARY	7.2	FOURLANE ROAD	14,695	0.18	20,127	0.25	\$68,640,000	\$	4,671	
126	PG	INTERSECTION IMPROVEMENT AT RT. 106 AND RT. 630 (COURTHOUSE RD. AND BULL HILL RD.	INTERSECTION IMPROVEMENT	US-460	INTERSECTION RT. 106 \& RT. 630 COURTHOUSE RD. \& BULL HILL RD.		N/A	$\begin{aligned} & \text { FOUR- } \\ & \text { LANE } \\ & \text { ROAD } \end{aligned}$	8,510	0.28	13,625	0.45	\$1,402,560	\$	165	
120	PG	INTERSECTION IMPROVEMENT AT COURTHOUSE ROAD and baxter road, ADDING SIGNALIZATION	INTERSECTION IMPROVEMENT	COURTHOUSE RD	COURTHOUSE RD	BAXTER RD	N / A	TWOLANE ROAD	8,510	0.32	11,975	0.4	\$675,000	\$	79	
134	TCAMPO	TCAMP: US-460/I-85/I95 INTERCHANGE (2015 SMART SCALE/BH2 PROJECT)	NEW CONTRUCTION	US-460/\|-85/	-95 INTERCHANG	CRATER RD	WANGER RD.	3	TWOLANE ROAD	60,000	0.6	70,000	0.7	\$17,224,517		. 075283

Section 7 - Appendices

Appendix A: Comment Log
This comment log provides a summary of comments received by the MPO during development of the TIP.

Source	Summary of Comment	MPO Response	
US ARMY CORPS OF ENGINEERS NORFOLK DISTRICT FORT NORFOLK 803 FRONT STREET NORFOLK VA 23510-1011 In a letter dated April 3, 2017 - by Alice Allen-Grimes	The discussion of avoidance in Table 12 should specifically include choosing another alignment. The discussion of minimization in Table 12 should specifically be expanded with specific examples. Figure 65 is difficult to read and should include wetlands and streams.	Table 12 has been revised as suggested. Figure 65 has been revised to show wetlands from the National Wetlands Inventory Maps and the resolution has been improved.	
Friends of the Lower Appomattox River	Thanks for sharing the draft Transportation Plan. See thoughts below. - Wendy - Page 21 - first sentence under "Bicycle and Pedestrian" heading - Would change the language from "provides users with access at either end of a trip or recreational opportunities" to something like "provides opportunity for alternative modes of transportation and/or recreation." When you read the information in the tables that follow, they certainly talk about bike/walk as a means of transportation - The maps are difficult to read, but it seems like the Appomattox River Trail (ART) could be added as an overlay - and the map on page 25 seems to have some of it mapped - Seems appropriate to mention ART in this section as a bike/ped facility that will span the region. Could even link the concept of a separated trail system to some of the pedestrian fatality data cited later in the document.		
Chesterfield County (Ms. Barb Smith via email) May 2, 2017	David - I am sorry to have to make this request, but we need to add another project to the MTP. It's an extension to a project listed in the draft MTP on page 72. Here is the description: East-West Freeway; Construct a new 2-lane road (1.2 miles) from Harrowgate Road to Route 1; The estimate for this 1.2 mile road is $\$ 30 \mathrm{M}$. See attached sketch. Obviously, we do not know the funding source for this project, but we would like to include it under "Private-Local". Please let me know the schedule for getting this project added and don't hesitate to contact me if you have any questions or need additional information. Barb	The MPO staff discussed the project with Ms. Smith and determined that the project description was in error. We are correcting the description and adding a note to the cost estimate noting that	
City of Petersburg (Interim City Man-	Mr. Berry noted that there were no projects specific to Petersburg in the Draft MTP	City of Petersburg staff did not request any projects. There	
79 \\| Page		Review Draft 25 Aril 2017	

Appendix B: Copies of Media Advertising \& Social Media Posts

TCMPO Facebook Page

Screenshot of Facebook Page(s) to be added in the final document

TCMPO Website
Screenshot of Facebook Page(s) to be added in the final document

Appendix C: Correlation Plots of Fatal Accidents by Jurisdiction

Tri-Cities MPO	Total Fatalities	AlcoholImpaired Driving (BAC=.08+) Fatalities	Single Vehicle	Large Truck	Speeding	Rollover	Roadway Departure	Intersection Related	Passenger Car	Light Truck	Motorcyclist	Pedestrian	Bicyclist
Total Fatalities	1.00												
Alcohol-Impaired Driving (BAC=.08+) Fatalities	0.64	1.00											
Single Vehicle	0.88	0.63	1.00										
Large Truck	0.09	0.20	0.55	1.00									
Speeding	0.31	0.01	0.09	0.13	1.00								
Rollover	0.82	0.35	0.62	0.02	0.79	1.00							
Roadway Departure	0.99	0.72	0.91	0.17	0.30	0.80	1.00						
Intersection Related	0.04	0.63	0.11	0.27	0.47	0.36	0.02	1.00					
Passenger Car	0.36	0.95	0.36	0.11	0.13	0.09	0.45	0.81	1.00				
Light Truck	0.99	0.71	0.86	0.06	0.24	0.77	0.99	0.09	0.46	1.00			
Motorcyclist	0.69	0.06	0.57	0.09	0.65	0.86	0.63	0.73	0.36	0.59	1.00		
Pedestrian	0.37	0.90	0.32	0.04	0.32	0.01	0.44	0.90	0.96	0.48	0.42	1.00	
Bicyclist	0.00	0.39	0.13	0.05	0.91	0.56	0.03	0.72	0.48	0.09	0.60	0.67	1.00
Chesterfield County	Total Fatalities*	Alcohol- Impaired Driv- ing (BAC=.08+) Fatalities	Single Vehicle	Large Truck	eeding	Rollover	Roadway Departure	Intersection Related	Passenger Car	Light Truck	Motorcyclist	Pedestrian	Bicyclist
Total Fatalities*	1.00												
Alcohol-Impaired Driving (BAC=.08+) Fatalities	0.62	1.00											
Single Vehicle	0.98	0.66	1.00										
Large Truck	0.84	0.10	0.80	1.00									
Speeding	0.64	0.25	0.53	0.53	1.00								
Rollover	0.66	0.65	0.54	0.32	0.66	1.00							
Roadway Departure	0.98	0.55	0.96	0.88	0.51	0.60	1.00						
Intersection Related	0.04	0.54	0.11	0.37	0.31	0.15	0.14	1.00					
Passenger Car	0.46	0.81	0.53	0.00	0.44	0.40	0.30	0.90	1.00				
Light Truck	0.67	0.69	0.66	0.44	0.02	0.62	0.75	0.24	0.15	1.00			
Motorcyclist	0.61	0.07	0.46	0.73	0.88	0.55	0.56	0.17	0.00	0.07	1.00		
Pedestrian	0.07	0.82	0.14	0.45	0.21	0.37	0.02	0.55	0.61	0.47	0.54	1.00	
Bicyclist	0.09	0.48	0.10	0.33	0.64	0.31	0.05	0.32	0.37	0.28	0.83	0.68	1.00

89 \| Page

Hopewell	Total Fatalities*	AlcoholImpaired Driving (BAC=.08+) Fatalities	Single Vehicle	Large Truck	Speeding	Rollover	Roadway Departure	Intersection Related	Passenger Car	Light Truck	Motorcyclist	Pedestrian	Bicyclist
Total Fatalities*	1.00												
Alcohol-Impaired Driving (BAC=.08+) Fatalities	0.17	1.00											
Single Vehicle	0.17	1.00	1.00										
Large Truck	NA	NA	NA	1.00									
Speeding	0.61	0.61	0.61	NA	1.00								
Rollover	NA	NA	NA	NA	NA	1.00							
Roadway Departure	0.67	0.17	0.17	NA	0.41	NA	1.00						
Intersection Related	0.61	0.41	0.41	NA	0.25	NA	0.41	1.00					
Passenger Car	0.92	0.10	0.10	NA	0.25	NA	0.61	0.88	1.00				
Light Truck	0.67	0.17	0.17	NA	0.41	NA	1.00	0.41	0.61	1.00			
Motorcyclist	0.41	0.41	0.41	NA	0.25	NA	0.41	0.25	0.38	0.41	1.00		
Pedestrian	0.61	0.61	0.61	NA	1.00	NA	0.41	0.25	0.25	0.41	0.25	1.00	
Bicyclist	NA	1.00											
Petersburg	Total Fatalities*	AlcoholImpaired Driving (BAC=.08+) Fatalities	Single Vehicle	Large Truck	Speeding	Rollover	Roadway Departure	Intersection Related	Passenger Car	Light Truck	Motorcyclist	Pedestrian	Bicyclist
Total Fatalities*	1.00												
Alcohol-Impaired Driving (BAC=.08+) Fatalities	0.98	1.00											
Single Vehicle	0.98	0.93	1.00										
Large Truck	0.23	0.34	0.08	1.00									
Speeding	0.62	0.56	0.74	0.41	1.00								
Rollover	0.74	0.63	0.83	0.46	0.75	1.00							
Roadway Departure	0.89	0.81	0.96	0.22	0.84	0.94	1.00						
Intersection Related	0.85	0.91	0.74	0.61	0.17	0.37	0.54	1.00					
Passenger Car	0.93	0.91	0.94	0.07	0.72	0.87	0.94	0.72	1.00				
Light Truck	0.09	0.14	0.18	0.61	0.67	0.37	0.36	0.17	0.39	1.00			
Motorcyclist	0.62	0.56	0.74	0.41	1.00	0.75	0.84	0.17	0.72	0.67	1.00		
Pedestrian	0.23	0.34	0.08	1.00	0.41	0.46	0.22	0.61	0.07	0.61	0.41	1.00	
Bicyclist	NA	1.00											

'Prince George County	Total Fatalities	Alcohol- Impaired Driving (BAC=.08+) Fatalities	Single Vehicle	Large Truck	Speeding	Rollover	Roadway Departure	Intersection Related	Passenger Car	Light Truck	Motorcyclist	Pedestrian	Bicyclist
Total Fatalities*	1.00												
Alcohol-Impaired Driving (BAC=.08+) Fatalities	0.87	1.00											
Single Vehicle	0.97	0.76	1.00										
Large Truck	0.75	0.42	0.76	1.00									
Speeding	0.49	0.61	0.52	0.07	1.00								
Rollover	0.33	0.05	0.46	0.30	0.02	1.00							
Roadway Departure	0.78	0.80	0.76	0.21	0.67	0.46	1.00						
Intersection Related	0.74	0.69	0.72	0.69	0.51	0.23	0.30	1.00					
Passenger Car	0.58	0.73	0.56	0.15	0.91	0.30	0.53	0.78	1.00				
Light Truck	0.57	0.57	0.48	0.24	0.03	0.52	0.75	0.09	0.07	1.00			
Motorcyclist	0.49	0.29	0.52	0.78	0.13	0.20	0.11	0.88	0.44	0.34	1.00		
Pedestrian	0.76	0.68	0.70	0.42	0.18	0.59	0.85	0.13	0.10	0.96	0.13	1.00	
Bicyclist	NA	1.00											

figure 92: Terrorist Incidents by State
Terrorists choose targets using five general criteria (Terrorism):

- Minimal danger to themselves
- Ease of access;
- Visibility (e.g., international airports, landmarks, large cities, or major special events);
- Avoiding detection before the attack; and
- Easy escape from the site.

However, many targets meet these criteria. Figure 39 looks at the U.S. targets of terrorists. Despite high profile incidents outside the U.S., only five of the 1000 incidents recorded since 1982 have been directed at transportation targets. However, 51 of the 1000 incidents have targeted military facilities and Fort Lee, home of the US Army Logistics Command, is in the Tri-Cities MPO's service area.

Figure 93: Terrorist Incidents by Target Type
Figure 40 shows the types of terrorist incidents that have occurred in the U.S. Over eighty percent of the attacks in the U.S have been attacks on facilities.

[^12]
Appendix E: Human Services Transportation Providers

Table 18: Human Services Transportation Providers

Service Area	Agency/ Provider	Client Type	\# of Vehicles	Trip Characteristics (Times, Fees, etc.)	\# of Trips	Wheelchair Accessible	Contact Information
As arranged	Senior Bridge	Provides escort and errand services in association with their home health care services		Rides arranged on a per case basis; contact provider for more information.			Phone: (804) 282-0753 Website: www.matureoptions.com
Chesterfield County. Trips outside Chesterfield County will be available for medical purposes only; with the exception of or passengers living in Southeastern Chesterfield County where limited transportation is available along a designated route in CoIonial Heights.	Access Chesterfield	Available to people with disabilities, people age 60+, or households living at 200% of federal poverty level. Must be a resident of Chesterfield and registered for the service.	15 Vehicles	Monday - Friday 5:30am to $7: 30 \mathrm{pm}$ and Saturday 5:30am to 5:30pm. $\$ 30$ for five vouchers; voucher good for one way trip.	50,000 annually	Yes	Phone: (804) 279-8489 (registration) (804) 955-4172 (ride requests) Website: www.chesterfield.gov/accesschesterfield
Chesterfield County	Chesterfield Communi- ty Services Board (CSB)	Members of CSB programs	30 Vehicles	Service is associated with CSB services. Transportation includes trips for employment, day services, mental health services and substance abuse programs.	77,000 in FY 14	Yes	Phone: (804) 748-1227 Website: www.chesterfield.gov/csb
Chesterfield, Goochland, Hanover, Henrico, Richmond, Petersburg area	Acti-Kare in Home Care			Monday - Sunday 6:00am to 9:00pm. $\$ 16$ to $\$ 18$ per hour.			Phone: (804) 264-2829 Website: www.actikarerichmondva.com
Chesterfield, Henrico, Richmond; additional fees apply in Powhatan, Goochland and Hanover	Alliance Specialty Transport			Transportation provided 24/7. Office hours are Monday - Friday 9:00am to 5:00pm.		Yes	Phone: (804) 225-8599 Website: Alliancespecialtytransport.com
Chesterfield, Henrico and Richmond	American Cancer Society (Road to Recovery)	Transportation to and from cancer treatment for those without rides.		Monday - Friday 8:00am to 5:00pm. Rides are free.			Phone: (804) 527-3700 Website: www.cancer.org
Chesterfield, Henrico, Richmond	Mobility Transportation, LLC	General public		Monday - Friday 6:00am to 6:00pm and Saturday 6:00am to 1:00pm.		Yes	Phone: (804) 687-6590 Website: www.mobility-transportation.com
Chesterfield, Glen Allen, Hanover, Henrico, Mechanicsville, Midlothian, Richmond	Home Helpers	General public; intended for seniors and lower income persons		Provide trips for grocery shopping, prescription pick-up, errand services and doctor visits.			Phone: (804) 864-4258 Website: Homecarerichmond.com
Colonial Heights, Hopewell, Petersburg	Petersburg Area Transit	General public	14 Buses 6 Demand Response Vehicles	Monday - Thursday 5:45am to 7:00pm, Friday 5:45am to 8:00pm and Saturday 6:45am to 8:00pm fixed route and demand response service.	$\begin{aligned} & 664,701 \text { in } \\ & \text { FY12 } \end{aligned}$	Yes	Phone: (804) 733-2450 Website: www.petersburg-va.org/transit/
Colonial Heights, Hopewell, Petersburg; service in other areas may be provided upon request	Pink Transportation			Service provided 24 hours a day, 7 days a week.			Phone: (804) 894-8646 Website: www.pink804.com

Service Area	Agency/ Provider	Client Type	\# of Vehicles	Trip Characterisitics (Times, Fees, etc.)	\# of Trips	Wheelchair Accessible	Contact Information
Goochland, Hanover and Powhatan	Capital Area Partnership Uplifting People (CAP-UP)	Intended for Seniors	8 Vehicles		7,716 in FY 10		Phone: (804) 598-3351
New Kent and Charles City Counties to Richmond	Bay Transit	General public	48 Vehicles (35 are wheelchair accessible)	Call Monday - Friday 6:00am to 6:00pm to schedule a ride. $\$ 2.00$ per trip; $\$ 12.00$ for booklet of 10 trips.	11,453 in FY 13	Yes	Phone: (804) 966-8743 Website: www.baytransit.org
Goochland	Goochland Free Clinic and Family Services	Must be at or below the 200\% of the federal poverty level; eligibility screening required	3 Vehicles	Monday 12:00pm to 3:00pm in Richmond; Tuesday - Thursday 9:00am to 3:00pm in Goochland; and Friday 9:00am to 12:00pm in Richmond. Fare free if eligible.	3,246 in FY 13		Phone: (804) 556-6260 Website: Goochlandfreeclinicandfamilyservices.org
Greater Richmond area	Comfort Keepers	Disabled adults, seniors aging in place and persons recovering from surgery.		Provides transportation incidental to other care services.	24,781 in FY 13		Phone: (804) 750-1 123 Website: www.comfortkeepers.com
Greater Richmond area	Greater Richmond ARC	People with developmental disabled and their families	9 Vehicles	Provides transportation for ARC services. Contact provider for more information.	82,873 in FY 13	res	Phone: (804) 358-1874 Website: www.richmondarc.org
Greater Richmond area	Heart Havens, Inc.	Persons with intellectual disabilities hat are enrolled in the program	2 Vehicles	Trips are available by appointment for community outings, medical appointments and shopping.			Phone: (804) 237-6097 Website: www.hearthavens.org
Richmond, Goochland and Petersburg	Brooks LLC			Monday - Friday 7:00am to 7:00pm, Saturday 7:00am to 5:00pm and Sunday by appointment only.			Phone: (804) 276-3401
Richmond and surrounding areas	Bowman Transportation Service			Office Hours Monday - Friday 8:00am to 5:00pm.		Yes	Phone: (804) 745-0046 Website: www.ridewithlarry.com
Richmond and surrounding areas	Dependacare Transportation	General public		Provide pre-scheduled and same day appointments for door-to-door, curb-tocurb, or door-through-door service.		Yes	Phone: (804) 745-1818 Website: www.dependacareva.com
Petersburg, Colonial Heights, Dinwiddie, Greensville, Hopewell, Prince George, Surry, Sussex	Crater District AAA	General public, elderly, disabled and Medicare	22 Vehicles	Monday - Friday 8:00am to 4:30pm. Volunteer based; must schedule ride at least 48 business hours before appointment.		Yes	Phone: (804) 732-7020 Website: www.cdaaa.org
	Flagship Transportation			Monday - Friday 6:00am to 6:00pm and Saturday 6:00am to 2:00pm.			Phone: (434)265-6781 Website: www.flagshiptransport.com
Richmond, Chesterfield, Hanover, Henrico	Greater Richmond Transit Company (GRTC)	General public	$\begin{aligned} & 135 \\ & \text { Vehicles } \end{aligned}$	Fixed route service available daily from 5:00am to 1:00am. Fare is $\$ 1.50, \$ 0.75$ reduced fare is available for those aged $65+$, certain disabilities and CARE	$\begin{aligned} & 8,845,810 \\ & \text { in } \mathrm{FY} 13 \end{aligned}$	Yes	Phone: (804) 358-4782 Website: www.ridegrtc.com
Richmond, Henrico and portions of Chesterfield	GRTC's CARE	ADA paratransit eligibility process is required.	70 Vehicles	Richmond: 4:30am to 12:30am and Henrico: 6:00am to 11:00pm. Specialized transportation fare is $\$ 3.00$.	345,358 in FY 13	Yes	Phone: (804) 782-2273 Website: www.ridegrtc.com

Service Area	Agency/ Provider	Client Type	\# of Vehicles	Trip Characteristics (Times, Fees, etc.)	\# of Trips	Wheelchair Accessible	Contact Information
Richmond area	Home Instead Senior Care	Home Instead provides transportation incidental to their companionship services		As scheduled; there is a three hour minimum per visit and we prefer at least a 24 hour notice. Provide service for a single event or regular schedule seven days a week.			Phone: (804) 527-1 100 Website: www.homeinstead.com
Within six miles of clinic locations	Jen Care	Healthcare delivery system for seniors eligible for Medicare		Trips are designated for clinic patients.			Phone: (804) 344-9848 Website: www.jencaremed.com
South-central Hanover County (zip codes: 23111, 23116 and portion of 23059	Mechanicsville Churches Emergency Function Senior Rides	Seniors		Rides arranged on a per case basis; contracts with transit agencies and taxicab companies. Contact provider for more information.			Phone: (804) 334-6590 Website: www.mcef.co
Richmond area	New Freedom Transportation, LLC	General Public, Medicaid	7 Fiffeen Passenger Vans 7 7 Minivans	Rides arranged on a per case basis; contact provider for more information.			Phone: (804) 288-1248 Website: Mww.newfreedomtransportation.com
Richmond area	Save Our Seniors			Rides arranged on a per case basis; contact provider for more information.			Phone: (804) 559-4480
Chesterfield, Henrico and Richmond	Presbyterian Homes and Family Services and the Family Alliance/Ways to Work	This program is geared towards families in helping them retain employment	1 Vehicle	The Ways to Work Program has ap proved 103 families with small-interest loans to meet their transportation needs. Contact provider for more information.			Phone: (804) 888-8226 Website: www.phfs.org www.waystowork.org
Richmond (Shelia Lane WalMart; service from Hillside Court, Fay Tower, Creighton Court, Fairfield, Mosby, Whit comb, and Fulton)	RVA Shoppers' Shutlle			Operates on the second and ninth day of each month and the third Saturday of each month. Bus schedules are online. Fare free.		No	Phone: (804) 646-7985 Website: Richmondvacitynews.blogspot.com /2012/02/rva-shoppers-shuttleschedule.html
Charles City, Chesterfield, Goochland, Hanover, Henrico, New Kent, Powhatan and Richmond	Senior Connections	General public, elderly and disabled		Contact provider for more information.		Yes	Phone: (804) 343-3000 Website:www.seniorconnections-va.org
Charles City Chesterfield, Colonial Heights, Goochland, Hanover, Henrico, Hopewell, New Kent, Petersburg, Powhatan and Richmond,	VIP \& Associates			Monday - Friday 8:00am to 4:00pm.		Yes	Phone: (804) 329-2500
Chester, Chesterfield, Colonial Heights, Dinwiddie, Hopewell, Midlothian, Prince George, South Richmond	Shepherd's Center of Chesterfield	Must be over 50 years of age without serious cognitive impairment		Office hours are Monday - Friday 9:00am to 1:00pm. Fare free, donations accepted.		No	Phone: (804) 706-6689 Website: www.shepctrchesterfield.org
Greater Richmond and Petersburg areas	Senior Express Enterprise			Monday - Friday 7:00am to 6:00pm.			Phone: (804) 402-6457

Service Area	Agency/ Provider	Client Type	\# of Vehicles	Trip Characteristics (Times, Fees, etc.)	\# of Tips	Wheelchair Accessible	Contact Information
Greater Richmond and Petersburg areas including Hanover, Williamsburg, Louisa and Powhatan	St. Joseph's Villa	Children and families with special needs	6 Vehicles	Transportation is provided as needed to participants in St. Joseph's programs. Contact the provider for more information.		Yes	Phone: (804) 553-3200 Website: www.neverstopbelieving.org
Richmond, eastern Henrico	Seniors Helping Seniors			Rides arranged on a per case basis; contact provider for more information.			Phone: (804) 553-0526 Website: www.seniorshelpingseniors.com/RVA
Goochland, Hanover, Henrico, Louisa and Richmond	Tendercare Transport			Monday - Friday 8:00am to 5:00pm.		Yes	Phone: (804) 288-8763 Website: www.tendercareofva.com
Petersburg	We Care Transportation			Rides arranged on a per case basis; contact provider for more information.			Phone: (804) 7333-2450
Powhatan, Colonial Heights, Hopewell, Petersburg, Chesterfield, Hanover, Henrico, Richmond and Goochland	Van Go			Monday - Friday 5:30am to 8:30pm; service available 24 hours a day with advance notice.		Yes	Phone: (804) 261-7388 Website: www.vangorichmond.com
Richmond area based ; will provide transport to anywhere in Virginia and some out of state trips	TNT Transportation Services	Non-Emergency Medical Transportation	11 Vehicles	Available 24/7. Fees based per trip. Authorized for intrastate and interstate transportation.	300 per month	Yes	Phone: (804) 270-3258 Website: www.tntvans.com
Richmond, Hanover and Henrico	Sunrise Transportation			Monday - Friday 7:00am to 7:00pm.			Phone: (804)559-6083
Statewide	Logisticare - Virginia NonEmergency Medical Transportation System	Medicaid recipients only	None	Can be contacted 24 hours a day to arrange transportation. Fares are arranged through Medicaid.	800,000 registered members	Yes	Phone: (866) 810-8305 Website: www.logisticare.com
Western Richmond, western Henrico, northern Chesterfield; additional fee for pickup in other areas.	Angels for Hire/Angel Ride			Monday - Friday 8:30am to 6:00pm.		Yes	Phone: (804) 423-9200 Website: www.angelride.net
Zip codes: 23059, 23060, 23113, 23114, 23219, 23220, 23221, 23222, 23224, 23225, 23226, 23227, 23228, 23229, 23230, 23233, 23235, 23236, 23238, 23294	Shepherd's Center of Richmond	Must be over 60 years of age without serious cognitive impairment		Transportation is provided for medical appointments and grocery shopping. Office hours are Monday - Friday 8:30am to $4: 30 \mathrm{pmFare}$ free .		No	Phone: (804) 355-7282 Website: www.tscor.wordpress.com
	CareMore	Must be an Anthem Blue Cross Blue Shield Medicare patient to use services		Service is associated with individual facilities.			Phone: (855) 242-9606 Website: www.caremore.com
	Capital Area Health Network (CAHN)	Members of the CAHN		Transportation services are associated with CAHN medical services.			Phone: (804) 253-1969 Website: Cahealthnet.com

Appendix F: Interagency Contact List
Table 19: Agency Contacts

Agency	Contact Name	Address	Telephone	Fax	Email
U.S. Department of Agriculture	Janice Stroud-Bickes, Acting State Director	1606 Santa Rosa Road, Suite 209 Richmond, VA 23229-5014	804-287-1615	804-287-1718	janiceStroud-Bickes@va.usda.gov
U.S. Army Corps of Engineers Office	Alice Allen-Grimes	Regulatory Branch Corps of Engineers 803 Front St. Norfolk, VA 23510	757-201-7219		Alice.W.AllenGrimes@usace.army.mil]
U.S. EPA Region 3	Cecil A. Rodrigues	1650 Arch Street (3APOO) Philadelphia, PA 19103-2029	215-814-2900		R3 RA@epa.gov
U.S. Fish and Wildlife Service	Cindy Schulz, Field Supervisor	Virginia Field Office 6669 Short Lane Gloucester, VA 23061	804-824-2426	804-654-1842	cindy schulz@fws.gov
U.S. Geological Survey	George E. Harlow Jr., Associate Director	Virginia -West Virginia Water Science Center 1730 East Parham Road Richmond, VA 23228	804-261-2631	804-261-2657	geharlow@usgs.gov
Virginia Department of Conservation and Recreation	Tom Smith, Director	Natural Heritage Central Office Main Street Centre 600 East Main Street 1657 Richmond, VA 23219	804-786-45574	804-225-3447	Tom.Smith@dcr.virginia.gov
Virginia Department of Environmental Quality	Michael Murphy, Regional Director	Piedmont Regional Office 4949-A Cox Road Glen Allen, VA 23060	804-527-5020	804-527-5106	Michael.Murphy@deq.virginia.gov
Virginia Department of Environmental Quality	Michael Dowd, Air Quality Division Director	629 East Main Street Richmond, VA 23219	804-698-4424		Michael.Dowd@deq.virginia.gov
Virginia Department of Forestry	Bettina K. Ring, State Forester	Fontaine Research Park 900 Natural Resources Drive Suite 800 Charlottesville, VA 22903	434-220-9047	434-296-2369	BETTINA.RING@DOF.VIRGINIA.GOV
Virginia Department of Game and Inland Fisheries	Robert "Bob" W. Duncan Executive Director	Director's Office Virginia Department of Game and Inland Fisheries P.O. Box 90778 Henrico, VA 23228	804-367-9231		BOB.DUNCAN@DGIF.VIRGINIA.GOV

Appendix G: Available Funds for the Transportation Plan in Constant

Dollars

Table 20: Available Funding for the Years 2017 through 2022 (Constant Dollars)

Period 1: 2017-2022	Year						Grand Total
	2017	2018	2019	2020	2021	2022	
Maintenance							
Maintenance-Localifies	\$ 3,975,069	\$3,961,269	\$,952.056	\$,947,388	\$,947,237	\$3,947,722	\$23,73,741
Maintenance-VDot	\$ 18,937.445	\$18,874,862	\$18,832,388	\$18,810,276	\$8.807,254	\$18,807,527	\$ 13,069,752
State of Good Repair	\$ -	\$ -	\$ -	\$ -	\$3,584,380	\$.482,379	\$ 7.066,759
Maintenance Total	\$ 22,912,514	\$2,83, 131	\$22,784,444	\$.757,64	\$26,338,871	\$6,237,628	\$143,867,252
None							
CMAQ	\$ 99,841	\$ 976,782	\$ 957,287	\$ 938,336	\$ 919.909	910,559	\$ 5.699.714
CMAQ-Match	\$ 249,210	\$ 244,195	\$ 239,322	\$ 234.584	\$ 229.977	\$ 227.639	\$ 1.424,927
Distric Grant Program	\$ 616.688	\$ 352.571	\$ 313,151	\$1,007,200	\$800,574	\$ 2,128,121	\$ 7,223,305
High Proiority Projects	\$ 616.688	\$ 352.571	\$ 313,151	\$ 1,007,200	\$800,574	\$ 2,128,121	\$ 7,223,305
Other Discretionary Construction	\$3,919,883	\$ 322.988	\$ $0.040,925$	\$1.518,467	\$ 160,233	\$ 810,616	\$ 22,778.822
RSTP	\$1.844,419	\$ 1,807,306	\$ 1.771.234	\$1.736,169	\$72.075	\$ 1.883,273	\$ 10.544,476
RSTP-Match	\$ 461, 105	\$ 451.827	\$ 442.809	\$ 434,042	\$425.519	\$ 420.818	\$ 2.636,120
TAP	\$ 145,583	\$ 142.653	\$ 139.806	\$ 137.038	\$ 134,347	\$ 132.863	\$ 832,290
None Total	\$18,850,47	\$ 4.650.603	\$ 10,217,685	\$7.013.036	\$9,183,208	\$ 8,448,010	\$ $58,362,959$
Other							
Administrative	\$ 966,927	\$ 988,089	\$ 969.858	\$ 971.946	\$ 973,481	\$ 972.860	\$ $5.823,161$
Other Total	\$ 966,927	\$ 988.089	\$ 969.858	\$ 971,946	\$ 973,481	\$ 972,880	\$ 5.823,161
Transit							
5303	\$ -	\$	\$	\$	\$.	\$ -	\$ -
5307	807,000	\$ 1,534,000	\$ 1.480,000	\$ 1,830,000	\$ 1.003,000	807,000	\$ 7,254,000
5310	202,000	\$ 336.000	\$ 200,000	\$ 304,000	\$ 272,000	1,314,000	\$ 1,314,000
5339	141,000	\$ 112,000	\$ 142,000	\$ 142,000	\$ 12,000	141,000	\$ 790,000
Local Matching funds	3,400,000	\$ 1,039,000	\$ 998.000	\$ 2.667.000	\$ 1.019.000	3,400,000	\$ 9,123.000
State Matching funds	2,121,000	\$ 945,000	\$ 921,000	\$ 2, 128,000	\$ 942,000	\$ 2,121,000	\$ 7.057,000
Fares	395,000	\$ 394,000	\$ 394,000	\$ 394,000	\$ 394,000	395,000	\$ 1.971,000
Transit Total	\$ 7.066,000	\$4,360,000	\$4,135,000	\$7.465,000	\$4,342,000	\$ 7,066,000	\$ 27.368 .000
Grand Total	\$ 42,729,858	\$28,44,823	\$33,971,987	\$0,742,646	\$6,495,560	\$ 35,658,498	\$ 208,053,372

Table 21: Available Funding for the Years 2023 through 2028 (Constant Dollars)

Period 2: 2023 - 2028	Year						
	${ }^{2023}$	2024	2025	2026	2027	2028	Grand Total
Maintenance							
Maintenance-Localities	\$ 3,948.837	\$3,950,576	\$.952,930	\$3,955.896	\$,959,465	\$3,963,633	\$ 23,731,337
Maintenance-vDot	\$ 18.810,941	\$18.817,459	\$18,827,048	\$18.839,676	\$18,855,313	\$18.873,929	\$113.024,366
State of Good Repair	\$ 3,324,057	\$ 3,131.827	\$.339,277	\$,757,717	\$2,58,.543	\$2.526.017	\$ 17,26, 438
Maintenance Total	\$26,083,835	\$25,899,862	\$25,719,255	\$25,55,289	\$25,403,321	\$25,363,579	\$ 154,023,141
None							
CMAQ	\$ 901.440	\$ 892.545	\$ 883.868	\$ 875,403	\$ 867,145	\$ 859,086	\$ 5.27, 487
CMAQ-Match	\$ 225,360	\$ 223,136	\$ 220.967	\$ 218.851	\$ 216,786	\$ 214.771	\$ 1.319,871
District Grant Program	\$ 2.031.368	\$ 1.913.895	\$ 1,796,225	\$ 1.885,271	\$ 1.581.887	\$ 1.543,677	\$ 10,552.323
High Prioity Projects	\$ 2.031.368	\$ 1.913.895	\$ 1.796,225	\$ 1.885,271	\$ 1.581.887	\$ 1.543,677	\$ 10.552.323
Other Discretionary Construction	\$ 806,399	\$ 796,444	\& 786,743	\$ 777,288	\$ 768.072	\$ 759,088	\$ 4.694,034
RSTP	\$ 1.664,943	\$ 1.63,028	\$ 1,601,975	\$ 1.571,753	\$ 1.542,336	\$ 1.513,697	\$ 9,527,732
RSTP-Match	\$ 416,236	\$ 411,768	\$ 407,412	\$ 403,163	\$ 399,020	\$ 394,979	\$ 2,432,578
tap	\$ 131,417	\$ 130.006	\$ 128.631	\$ 127.290	\$ 125,982	\$ 124,705	\$ 768.031
None Total	\$ 8,208,531	\$ 7.914,717	\$7.622,046	\$7,344,290	\$7,083,115	\$ $0.953,880$	\$ 45,126,379
Other							
Administrative	\$ 951,204	\$ 954,197	\$ 957,377	\$ 960,749	\$ 964.310	\$ 968,060	\$ 5,755.897
Other Total	\$ 951,204	\$ 954,197	\$ 957,377	\$ 960.749	\$ 964,310	\$968,060	\$ 5,75,.897
Transit							
5303	\$	\$	\$	\$	\$ -	\$	\$ -
5307	\$ 785,000	\$ 764,000	\$ 743,000	\$ 723,000	\$ 703,000	\$ 684,000	\$ 4,402,000
5310	\$ 1.278,000	\$ 1,243,000	\$ 1,209,000	\$ 1,176,000	\$ 1,144,000	\$ 1,113.000	\$ 7.163.000
5339	\$ 137,000	\$ 133,000	\$ 1296,000	\$ 125,000	\$ 122,000	\$ 119,000	\$ 765.000
Local Matching funds	\$ 3,307,000	3,217,000	\$ 3.129.000	\$ 3,304,000	\$ 2.961,000	\$ 2.208.000	\$ 18,538,00
State Matching funds	\$ 2.063.000	\$ 2,207,000	\$ 1.195.000	\$ 1,189,000	\$ 1.184,000	\$ 1.797.000	\$ 9,63,.000
Fares	\$ 384,000	374,000	\$ 364,000	\$ 354,000	\$ 344,000	\$ 335,000	\$ 2,125,000
Transit Total	\$ 7,954,000	¢ 7,938.000	\$ 7.572,000	\$ $6.871,000$	\$ 6,458,000	\$ $6,256,000$	\$ 42,628,000
Grand Total	\$ 35,243,570	\$ 34,788,776	\$ 4.298 .678	\$3.858.328	\$ 3.450,746	\$33,285,319	\$ 204.905 .417

Table 22 Available Funding for the Years 2029 through 2034 (Constant Dollars)

Period 3: 2029-2034	Year								Grand Total
		2029		2030	2031	2032	2033	2034	
Maintenance									
Maintenance-Localities	\$	3,968,396	\$	3,973,747	\$ 3,979,681	\$ 3,986,195	\$ 3,993,284	\$ 4,000,944	\$ 23,902,247
Maintenance-VDOT	\$	18.895,499		18,919,994	\$18,947,391	\$18,977,667	\$19,010,801	\$ 19,046,771	\$113,798,123
State of Good Repair	\$	2,531,907		2,451,128	\$ 2,349,500	\$ 2,332,691	\$ 2,291,417	\$ 2,219,099	\$ 14,175,742
Maintenance Total	\$	25,395,802		25,344,869	\$25,276,572	\$25,296,553	\$25,295,502	\$ 25,266,814	\$ 151,876,112
None									
CMAQ	\$	851,221	\$	843,545	\$ 836,054	\$ 828,741	\$ 821,602	\$ 814,632	\$ 4,995,795
CMAQ-Match	\$	212,806	\$	210,887	\$ 209,013	\$ 207,185	\$ 205,401	\$ 203,658	\$ 1,248,950
District Grant Program	\$	1,547,277	\$	1,497,912	\$ 1,435,805	\$1,425,533	\$ 1,400,310	\$ 1,356,116	8,662,953
High Priority Projects	\$	1.547.277	\$	1,497.912	\$ 1,435,805	\$,425,533	\$ 400,310	\$ 1,356,116	\$ 8,662,953
Other Discretionary Construction	\$	750,329	\$	741,788	\$ 733,458	\$ 725,333	\$ 717,407	\$ 709,675	\$ 4,377,990
RSTP	\$	1,485,810	\$	1,458,651	\$ 1,432, 195	\$ 1,406,420	\$1,381,305	\$ 1,356,827	8,521,208
RSTP-Match	\$	391,037	\$	387,190	\$ 383,437	\$ 379,775	\$ 376,201	\$ 372,712	2,290,352
tAP	\$	123,460	\$	122,246	\$ 121,061	\$ 119,904	\$ 118,776	\$ 117,674	\$ 723,121
None Total	\$	6,909,217	\$	6,760,131	\$,586,828	\$ 518,424	\$6,421,312	\$ 6,287,410	\$ 39,483,322
Other									
Administrative	\$	972,001	\$	976,132	\$ 980,453	\$ 984,965	\$ 989,669	\$ 994,566	5,897,786
Other Total	\$	972,001	\$	976,132	\$ 980,453	\$ 984,965	\$ 989,669	\$ 994,566	\$ 5.897,786
Transit									
5303	\$		\$		\$	\$	\$	\$ -	\$
5307	\$	665,000	\$	647,000	\$ 629,000	\$ 612,000	\$ 595,000	\$ 579,000	\$ 3,727,000
5310	\$	1,113,000	\$	1,083,000	\$ 1,053,000	\$ 1,024,000	\$ 996,000	\$ 969,000	\$ 6,0685,000
5339	\$	116,000	\$	113,000	\$ 110,000	\$ 107,000	104,000	\$ 101,000	\$ 651,000
Local Matching funds	\$	2.801,000	\$	2,275,000	\$ 2,651,000	\$ 2,257,000	\$ 2,509,000	\$ 2,441,000	\$ 15,706,000
State Matching funds	\$	1,748,000	\$	1,170,000	\$ 1,654,000	\$ 1,609,000	\$ 1,565,000	\$ 1,522,000	\$ 9,979,800
Fares	\$	326,000	\$	317,000	\$ 308,000	\$ 300,000	\$ 292,000	\$ 284,000	\$ 1,827,000
Transit Total		6,769,000		5,605,000	\$ $6,405,000$	\$ 5,909,000	\$ $6,061,000$	\$ 5,896,000	\$92,575,800
Grand Total		40,046,020		38,386,132	\$39,248,853	\$38,708,942	\$ 38,767,483	\$32,440,790	\$ 289,833,020

rable 23 Available Funding for the Years 2036 through 2040 (Constant Dollars)

Period 4: 2034-2040	Year								Grand Total
	2035		20362037			2038	2039	2040	
Maintenance									
Maintenance-Localities	\$	4,009,173	\$	4,017,965	\$ 4,027,318	\$4,037,229	\$ 4,047,696	\$ 4,058,716	\$ 24,198,097
Maintenance-VDOT	\$	19,085,560		19,127,150	\$19,171,525	\$9,218,669	\$19,268,570	\$ 19,321,215	\$ 115,192,689
State of Good Repair	\$	2,147,221		2,093,003	\$ 2,040,839	\$ 1,961,518	\$ 1,881,359	\$ 1,805,428	\$ 11,929,368
Maintenance Total		25,241,954		25,238,118	\$25,239,682	\$5,217,416	\$25,197,625	\$ 25,185,359	\$ 151,320,154
None									
CMAQ	\$	807,826	\$	801,181	\$ 794,691	\$ 788,353	\$ 782,161	\$ 776,114	\$ 4,750,326
CMAQ-Match	\$	201,957	\$	200,295	\$ 198,673	\$ 197,088	\$ 195,540	\$ 194,029	\$ 1,187,582
District Grant Program	\$	1,312,191	\$	1,279,058	\$1,247,179	\$1,198,706	\$ 1,149,719	\$ 1,103,317	7,290,170
High Priority Projects	\$	1,312,191	\$	1,279,058	\$1,247,179	\$1,198,706	\$1,149,719	\$ 1,103,317	\$ 7.290,170
Other Discretionary Construction	\$	702,130	\$	694,767	\$ 687.581	\$ 680.567	\$ 673.719	\$ 667,034	\$ 4,105,798
RSTP	\$	1,332,966		1,309,704	\$ 1,287,020	\$ 1,264,897	\$1,243,317	\$ 1,222,264	7.660,168
RSTP-Match	\$	369,307	\$	365,983	\$ 362,736	\$ 359,567	\$ 356,473	\$ 353,450	2,167,516
tAP	\$	116,599	\$	115,549	\$ 114,524	\$ 113,524	\$ 112,547	\$ 111,592	684,335
None Total	\$	6,155,167		6,045,595	\$ 5,939,583	\$ 5,801,408	\$ 5,663,195	\$ 5,531,117	\$ 35,136,065
Other									
Administrative	\$	999,656		1,004,941	\$ 1,010,421	\$ 1,016,097	\$ 1,021,970	\$ 1,028,044	6,081,129
Other Total	\$	999,656		1,004,941	\$ 1,010,421	\$ 1,016,097	\$ 1,021,970	\$ 1,028,044	\$ 6,081,129
Transit									
5303	\$		\$	-	\$	\$	\$	\$	\$ -
5307	\$	563.000	\$	548.000	\$ 533,000	\$ 518.000	\$ 504,000	\$ 490,000	\$ 3,156,000
5310	\$	917,000	\$	892,000	\$ 868,000	\$ 844,000	\$ 821,000	\$ 799,000	\$ 5,141,000
5339	\$	98,000	\$	95,000	\$ 92,000	\$ 89,000	\$ 87,000	\$ 85,000	546,000
Local Matching Funds	\$	2,374,000	\$	2,309,000	\$ 2,246,000	\$ 2,185,000	\$ 2,125,000	\$ 2,067,000	\$ 13,306,000
State Matching Funds	\$	1,480,000		1,440,000	\$ 1,401,000	\$ 1,363,000	\$ 1,326000	\$ 1,290,000	\$ 8,300,000
Fares	\$	276,000	\$	268,000	\$ 261,000	\$ 254,000	\$ 247,000	\$ 240,000	\$ 1,546,000
Transit Total	\$	5,708,000		5,552,000	\$ 5,401,000	5,253,000	\$ 5,110,000	\$ 4,971,000	\$ 31,995,000
Grand Total		38,104,777		37,840,654	\$37,590,686	\$37,287,921	\$36,999,790	\$36,715,520	\$224,532,348

Appendix H: Level of Service

The Highway Capacity Manual defines six levels of service using the letters A through F. LOS A represents the best operating conditions and LOS F the worst. Level of Service is a qualitative measure of operating conditions how they are perceived. Factors such as speed and travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety are used to describe level-of-service. LOS of C or better is considered desirable. LOS of E or F is undesirable. Levels-of-service are described in Table 25.
Table 24: Level of Service Definition

	Descripfion	Mulif-Lane (VPH/lane)	Signals (Delay/Vehicle)	Roundabout(Delay/ Vehicle)
LOS A	(Free flow) Vehicles can maneuver freely in the traffic stream. Minor accidents or breakdowns are easily absorbed.	600	<10	<10
LOS B	(Reasonably free flow) The ability to maneuver is slightly restricted. Minor accidents or breakdowns are easily absorbed.	960	10-20	10-15
LOS C	(Stable flow) Traffic flows are approaching the range in which increases in traffic deterioration in service. Freedom to maneuver is restricted. Minor accidents are still absorbed, but the deterioration in service will be substantial with queves forming behind blockages. Drivers experience a noticeable tension.	1440	21-35	16-25
LOS D	(High density, stable flow) Small increases in traffic cause substantial deterioration in service. Freedom to maneuver is severely limited and drivers experience drastically reduced physical and psychological comfort levels. Minor incidents can create substantial delays because the traffic stream has little space to absorb disruptions.	1825	36-55	26-35
LOS E	(Unstable operations) Few gaps exist in the traffic stream. Any disruption causes following vehicles to slow or stop. Incidents cause substantial delay. Maneuverability is extremely limited. Physical and psychological comfort is low.	2200	56-80	36-50
LOS F	(Forced/breakdown flow) Such conditions generally exist for a number of reasons such as traffic accidents, recurring points of congestion, or peak hour conditions which exceed the current design of the facility. LOS F is used to identify that point where the facility has reached maximum capacity and a complete break-	NA	>80	>50

Appendix I Richmond/Tri-Cities Travel Demand

 Model DevelopmentThe Richmond/Tri-Cities Forecasting (RTC) Model is an advanced practice four-step forecasting model supporting air quality analysis and project planning in the Richmond/Petersburg Metropolitan Area. It utilizes Citilabs' CUBE Catalog modeling platform. The model includes trip generation, trip distribution, mode split, and traffic assign ment. Its outputs forecast traffic volumes and congested travel speeds on roads. These results can be used to:

- Analyzing regional transportation scenarios in the planning process;
- Determine future transportation infrastructure needs;
- Analyzing the regional effects of different groups of transportation projects to aid project selection;
- Forecast future traffic congestion the CMP network analysis;
- Validating or checking other CMP data sources; and
- Analyzing driver route choices to better inform the CMP

In April 2012, the updated RTC model was in the final stages of development. The model has been calibrated and vali dated to the standards defined in the VTM policies and procedures manual.

The new model updates the base year of traffic analysis da ta 2008 and the horizon to 2040. It also includes these changes from the earlier model:

- The highway network has been enhanced and pro vides more detailed streets and alignments. The freeway interchanges are micro-coded in the network (i.e., coded more closely to the way they actu ally exist on the ground).
- The transit networks and their processes were converted to the CUBE Public Transport (PT) module. The networks were updated to represent 2008 GRTC transit services.
- The model has been refined to conduct time-of-day modeling. The first three steps in the model (trip generation, trip distribution and mode choice) are stratified for the peak period and the off-peak period. The highway assignments are further stratified into four time periods - AM peak, Midday, PM peak and Night.
- The trip generation and trip distribution models were refined using the 2009 National Household Travel Survey (NHTS) Virginia Add-On. Key relationships such as trip rates by purpose, average trip lengths, and trip frequency distributions are derived from that survey.
- The mode choice model was developed using the data from the 2009 GRTC On-Board transit survey, the NHTS data (automobile occupancy) and model parameters from FTA "national experience". The mode choice model is executed using CUBE's XCHOICE module.
- The highway assignment procedures include a variety of enhancements. These include the use of Conical Volume-Delay functions built up on the VDF optimization research done by Virginia Modeling, Analysis and Simulation Center (VMASC) at Old Dominion University (Source: Evaluation of Volume-Delay Functions and Their Implementation in VDOT Travel Demand Models, May 2011), refinements to the speedcapacity tables and the use of enhanced toll pro cedures.

Appendix J: Summary of Simulations Data

The MPO has found it useful to project future demand for transportation using a simplified Monte Carlo Method. Thi offers the advantages of simplicity and the ability to give a range of possible outcome and their likelihood of happen ing. The tables in this appendix show the basic information used in the simulation (historic data, year on year growth and sample standard deviation). They also show the range of potential demands for 2040 based upon 1,000 iterations of the simulation. These demands are rounded to the nearest 1000 vehicle miles of travel or 100 passengers.

Simulation Information for Interstate VMT				
Year	Interstate VMT			$\begin{aligned} & 2040 \text { VMT } \\ & \text { (1000 Itera- } \\ & \text { tions) } \end{aligned}$
2004	3,403,363		Maximum of Simulation	5,456,000
2005	3,492,956	2.6\%	95 ${ }^{\text {th }}$ Percentile	5,456,000
2006	3,577,625	2.4\%	$75^{\text {th }}$ Percentile	5,108,000
2007	3,600,653	0.6\%	50th Percentile	4,788,000
2008	3,512,754	-2.5\%	$25^{\text {th }}$ Percentile	4,481,000
2009	3,549,258	1.0\%	$5^{\text {th }}$ Percentile	4,224,000
2010	3,552,309	0.1\%	Minimum of Simulation	3,403,000
2011	3,474,359	-2.2\%		
2012	3,493,419	0.5\%		
2013	3,543,864	1.4\%		
2014	3,604,497	1.7\%		
2015	3,746,854	3.8\%		
Average (Historic Data)	3,566,366	1.0\%		
Sample Standard Deviation (Historic Data)	$\pm 57,172$	$\pm 2.0 \%$		

Simulation Information for Primary VMT				
Year	Primary VMT			$\begin{gathered} 2040 \text { VMT } \\ \text { (1000 Itera- } \\ \text { tions) } \end{gathered}$
2004	5,546,848		Maximum of Simulation	5,995,000
2005	5,640,297	-1\%	95 ${ }^{\text {th }}$ Percentile	9,380,000
2006	5,776,072	5\%	$75^{\text {th }}$ Percentile	8,575,000
2007	5,911,348	1\%	50th Percentile	8,575,000
2008	5,893,150	4\%	$25^{\text {th }}$ Percentile	7,002,000
2009	5,834,153	0\%	$5^{\text {th }}$ Percen-	6,478,000
2010	5,914,159	0\%	Minimum of Simulation	3,380,000
2011	5,820,009	-2\%		
2012	5,742,462	1\%		
2013	5,528,697	-2\%		
2014	5,721,242	2\%		
2015	6,109,028	5\%		
Average (Historic Data)	5,809,964	1.0\%		
Sample Standard Deviation (Historic Data)	$\pm 130,990$	$\pm 3.0 \%$		

Simulation Information for System VMT				
Year	System VMT	Year over Year Change		$\begin{aligned} & 2040 \text { VMT } \\ & \text { (1000 Itera- } \\ & \text { tions) } \end{aligned}$
2004	12,347,377		Maximum of Simulation	19,884,000
2005	12,512,891	1.3\%	95th Percentile	19,383,000
2006	12,918,053	3.1\%	$75^{\text {th }}$ Percentile	18,803,000
2007	13,094,697	1.3\%	50th Percentile	17,569,000
2008	13,152,465	0.4\%	$25^{\text {th }}$ Percentile	16,440,000
2009	13,123,938	-0.2\%	5th Percen-	13,771,000
2010	13,216,526	0.7\%	Minimum of Simulation	12,347,000
2011	12,967,407	-1.9\%		
2012	12,938,196	-0.2\%		
2013	12,693,555	-1.9\%		
2014	3,033,390	2.6\%		
Average (Historic Data)	13,106333	1.0\%		
Sample Standard Deviation (Historic Data)	$\pm 265,105$	$\pm 2.0 \%$		

Simulation Information for Fixed Route Ridership				
Year	Ridership	Year over Year Change		2040 Rider ership (1000 Iterations)
2003	475,672	-2.66\%	Maximum of Simulation	$\begin{array}{r} 998,5 \\ 00 \end{array}$
2004	463,023	0.38\%	95 th Percentile	$\begin{array}{r} 954,9 \\ 00 \end{array}$
2005	464,797	5.72\%	$75^{\text {th }}$ Percentile	$\begin{array}{r} 757,2 \\ 00 \\ \hline \end{array}$
2006	491,404	13.65\%	50'h Percentile	$\begin{array}{r} 644,9 \\ 00 \end{array}$
2007	558,481	5.98\%	$25^{\text {th }}$ Percentile	$\begin{array}{r} 544,0 \\ 00 \end{array}$
2008	591,887	2.89\%	$5^{\text {th }}$ Percentile	$\begin{array}{r} 575,0 \\ 00 \end{array}$
2009	609,022	-5.56\%	Minimum of Simulation	$\begin{array}{r} 252,0 \\ 00 \end{array}$
2010	575,162	1.82\%		
2011	585,641	12.04\%		
2012	656,155	-11.73\%		
2013	579,156	-28.12\%		
2014	416,269	-2.58\%		
2015	405,520	-2.66\%		
Average (Historic Data)	528,630	-0.68\%/Year		
Sample Standard Deviation (Historic Data)	$\pm 79,549$	$\pm 11.2 \%$		

Simulation Information for Demand Response Ridership				
Year	Ridership	Year over Year Change		2040 Ridership (1000 Iterations)
2003	17,875		Maximum of Simulation	17,900
2004	7,660	-57.15\%	95th Percentile	9,700
2005	8,003	4.48\%	75 th Percentile	1400
2006	8,968	12.06\%	50th Percentile	600
2007	8,150	-9.12\%	$25^{\text {th }}$ Percentile	200
2008	10,849	33.12\%	$5^{\text {th }}$ Percentile	100
2009	10,186	-6.11\%	Minimum of Simulation	0
2010	9,740	-4.38\%		
2011	8,009	-17.77\%		
2012	8,546	6.70\%		
2013	6,675	-21.89\%		
2014	6,266	-6.13\%		
Average (Historic Data)	9,244	-6.0\%		
Sample Standard Deviation (Historic Data)	$\pm 2,901$	$\pm 22.0 \%$		

Simulation Information for Rail Ridership				
Year	Ridership	Year over Year Change		2040 Ridership (1000 Iterations)
2008	20,909		Maximum of Simulation	67,000
2009	29,558	41.4\%	$95^{\text {th }}$ Percentile	59,000
2010	22,148	-25.1\%	$755^{\text {th }}$ Percentile	28,800
2011	22,065	-0.4\%	50th Percentile	16,000
2012	21,787	-1.3\%	$25^{\text {th }}$ Percentile	9,000
2013	27,909	28.1\%	$5^{\text {th }}$ Percentile	4,200
2014	29,286	4.9\%	Minimum of Simulation	4,000
2015	29,780	1.7\%		
Average (Historic Data)	9,244	7.1.0\%		
Sample Standard Deviation (Historic Data)	$\pm 2,901$	$\pm 20.0 \%$		

Appendix K: Executive Summary of the Environmental Assessment and Section 4(f) Tri-Cities Multimodal Station

Environmental Assessment and Section 4(f) Statement for the Tri-Cities Multimodal Station

Preparod Pursuant to 42 USC 54332,49 USC 5303, and 64 FR 28545
by the US. Dapartment of Trarsportation -
Foderal Railroad Adrninistration
and
Crater Planning District Commission

mimbinanda Ausurime
 Cvur Forring Datrat Corvitutan

Nermbug vallies
nopman-vesata
mothailiceacr

Tri-Cities Area Multimodal Station Chesterfield, Colonial Heights, and Petersburg, Virginia

PROJECT BACKGROUND AND EXECUTIVE SUMMARY

 This nummary is intended to saxist meders in sexwering these and othet ingportant questinnse

- Whas is the Tri-Gines Area Miltunodal Stanon Proiect
- What is an EA?
- Whar poes ime an EA?
- How is an RA preparent Who prepars iff

- Whas are some aress of contmivesy nelaned to the Tin-Gitis Ares Mutimodal Ssation project?
- What ate wame of the eivienomental effects relaned to the Tin-Cisio Area Malimodal Starion profect?

Some of the hightighte of this EA are docossed bekw.

WHAT IS THE TRI-CITIES AREA MULTIMODAL STATION PROJECT?

The Propect involves the construction of a new multinodes sation in the Tri-Cibes sers of Virghing, which indules the Cities of Peeresturg, Colonial Heighis and Hopewell (Tin-Cinies). The proposed station wil serve exsing and funare Amsrak regional and long disance trana, which operste at cnowentional apeeds trought the Ti-Cities ares, and will abo support the ineroduction of highter peed rait service atom, the Scutheat High Speed Rail (SEFSRR) Combor. The SFHSH Comidor catends from the Northess Comibor NFQ and Wistington, DC. trought Richmond ved the Tn-Cities ares, then benching onto fwo poutes extending easwatd to Noffclk, VA and weswad to Ralogh and Chatotes NC. Previous SEHSK' atadics did not eraluate potenmal ervimonement impucs of new ssasons as part of ins documentation, inctuing the Ts-Caies ares, leaving dhat andygies to be conducted in copjuncticn with local jursidicions such ws the Cruer Plenning Dastrict Conumision (CPDO, the zency tponioning this evaluation.
Figure ES 1 dhoos the Sudy Area for thì Projecr and include all localities within Tn-Cities seen

[^13]The purpose of the Project is to constrict the Tri-Cities Autss Multimodal Sextion for aurent inerecing posienger ral service thimugh Pemersburg, induding the relatively new conventional service bo Norfalk, and preare for the fieme int Carcina

Figure ES 1: Project Study Ares

WHAT IS AN ENVIRONMENTAL ASSESSMENT (EA)?

The National Emimomental Policy Act of 1969 (N.PPA) (42 USCC 14321 , et seq) mquims feleral sgence
 anvironmental impacts of peogosed profects.
A NEPA document masi be premared by a foteral izency for any midor federnd action that could potentially fffoct the quality of the natizal ned built environement. The approprate type of NEPA dooznent that a fedend agency must peryure for a given project (ether a Camgoniol Exdusien, an FA, or an Environmental Impocr Svatenear (EIS), is desermined by the agency driough a thoecugh, review of be proposed proiect. A
 when an wency peovidss funding for a profico. The term "eminoment" effer wo the nanaral and phosical

 prepared to wesist in masimg thas deternination. If the EA Ginds that the Prosect wil nsult in xignificunt, with the scion after completing the EA, i finting of no significant impact (FONSI) may be prepared.
An "envirotmental effect" is any change to the envirouramt resiling from the proposed activity.
 mistures to mitigut potental acherse effect.

WHAT GOES INTO AN EA?

NEPA axeme that any proposed gral an be achieved througd different mears. To the end, NFPA equires that sa EA eraluate the ervirocmenesal effecty of a "reasonable rangen" of project whemarive. NEP. moposed acmon
NEPA does not require sny specific mumber of alemstives. Instead, bhe namber and type of ressonable dtrmarwes depende on the specific nature of the Proices. The resocrable range of dernatives is detirmined affer carefid conederation of a number of factors which may include tectriical and ervimenmenoal criberih.
Precticaliey is soother consideration in deremnizing whether an ahternative is "reseonsble"-NEPA allowa cost, enginercing foseitidity, and othrr factoe to be considered.

NEPA does mequite that an envimemmal dooment explicitly noce ewo specific slumatives

- No Build ce No Action Alemarive
- Agoncy Preferred Alterrabive

Eath of the allemstives is discused ia moee detal below. Under NEPA, the No Buld or No Action Alecrnative (athich will be rfferend to ss the No Build Ahemative in this EA) denil the ervircomennal effecie that would resuil if no actice wocte taken. In this case, no new ruitimochal sation wewlid be consmucted.

The term "Agency Preferred Atrmative" refes to the optim/athernative that the led nod coopeasing
 coonotirn in lectrical actios.

WHAT IS THE PROCESS FOR PREPARING THE EA?

 framewick for perpaing an FA . Each federal zency may sho have is own, more specific guideline for Eemplenecting NEPA that will influmce the contemts of an cevimonrevital dooumest. For eramples the applenent the CEQ reqularion:

Scoping

 commens, diccuss the proposed alernatives, and ealk about the NEPA guedelines and EA process with

 naleholuy

Appendie K-S of this EA contain nummes mports of the public workhtops hed

Environmentol Assessment (EA)

The purpose of thin EA is sid doclose all of the environmensl effecs sasocuted with the alternatives, whether they are atvene of bencficial and allow for the pubbic so eview und wemment on the document The leak
 an EIS or A FONSI wo moid above. If no stignificat impucs ace sasoctated with the action after completing. the EA, 3 FONSI may be prepared and woid repersent the firal step in this proces.

Who prepares an EA

 mporant foles en proyect developenent and dhe ervironmental review process. FPA st the Lead Agene preparng this EA for the Project. PRA hay the withosity wo reydure the safery of raleonds sed nanges
 eron tod sem A

- Sem 64 Fel . Feg 28545

Prase ESC
ansipated thut they could provide fiuding sestacer for sation econtruction Overall mamgerment for th EA wa provided by the CPDC, who $\$$ FRA's sume partuer on the Project and was the sponser for the etvivonmental dooument. A Snidy Working, Group (SWG) Formed by CPDC, which in lloo descrbed in the

 process.
For the NEPA process for this Propect, ERA has worked with woo Cooperating Agencios, the Fedesi Trasse Admunistration (FTA) and the Feleal Highway Adminstration (FHWA). The role of the Cooperaing Agencies is to sssist the Lead Agence durng the sooping peocess and in devdopping information and preparng enviromenenal analyses; the specific foles depend on the ageneys experive and relanonithip to the proposed accion. Additiond atation funding may be available from FTA and FHWA, derefore thi EA

Figure ES 2 illuarrates the TriCitiea Area Mulimodal Sanion EA procas.

Figure ES 2: Environmental Assessment Process

 process, tesuling in 13 periminary sation bocióon concepts. The 13 conceps set divcused in mote detail in Chapter 2 of $1 \Rightarrow \mathrm{EA}$.

The assesment of 13 preliminary susbion concepts was an itrrative screming process coenducted in cooedminon with the Thi-Cinies MPOs SWG. The ioreening process compared each of the sainion wees to the essbbished mesurs of effectiversss that were developed in collbbonsion with the SWG and bssed on input received at a puhlic werkahop held December 11, 2014. The mesaurss of effectiveness att cepreained nto five different caregotes, will multiple mesaures in exch cuegory-
A summary of the messurss is indoded below snd the complete dexils of each mosesurn eee indoded in Appendix A.t:

- Deviga Coniderations - platform scoominodation, ADA compatikity, sad freight integration
- Property Implementation - issessed value, access foutes, nend redocations
- Envmomenal Conatmints - erviconmensal jusce and human/tanaral reacomes

 Based on these mesures of effectivenss, each stavion concept was scoeed and ranked to undexneed is
 dsadveatages seme more so than othes.
 conceptual in ranee, ate presened from nordh to south in the list below and shown in Chapter 2 of this EA
- Wwhall - the Wwhall sate min Chesierfidd County is cas of the farthes north of the 13 potentis) asation zits. This site ranked furth (iej) overall in the perdimerary scretring. The Whlthall site has some stengths, moluding desspa conesidextions and a bege open parcel. However, being so Far noxh, the sine is furthot from mapor populanion and employmest ctatest, widh lifried supporting land uses surroundigg the site. Multiple envirommental and culhind resource cossmints ceist within the pascel, and stakeholiders have rieed serious security concems dat to the percrimity to secoured induatrial usts.
- Arundes Bridge NE - the Chesterfidid County surest Branders Bidge nemked second becunse of ith. cental lication to the arthan cone and populanion, limind environemental constrients, and Ewonble deigs conideraticas. Howtere, the vite is lagely is a mederetul srea and the country comprehername plans do not incorposace a multroodal atation at thas location.

 kitchen of dary of a lage farming cperstion active daring the Antebelatins as wel as Ciml War and Heconstruction periode of the site. Given the listonic nigerifience of the sine, the SWG syered that shifting.

Of the five conceptual station sumes evaluntral in Screning \#2, four conceppo were cerried forwed for fierther evaluation in this BA to become the Buld Altematives Boaleraed (NW), Brandes Bridee (NF) Frrick, कo well as the shified location for Collier - Collier South. The No-Build Altrmative (mestriening the evisting
 against which the progosed atrion sitex are compseed, whowgh it would not moet the purpose and neod for thas Profect

To esat for sate development nurahility sed environmenad impacts at each of the fout Auld Altemativer, comman sation conctor was developed. Statoon sace, determined by cursait utlization ind witicipated nidership growth, cals for a Smal/Merlum Seation. The typical seation tootprint is approximandy 2.5 acrex ,
 Atrmative station and configurason was wifluenced hy topogrephical conatraniss and site-xperific condibone. Lpon identifcsion of a Peferred Build Ahtrrarive at the condlaion of this NEPA procest, the staitos site
 and wablect sorefinemens.

At this conceptaal stage of derigh, the typosal sation features for any of the four Build Altermaties include the fallowing
 SEHSK third mack. The platforn would be a minimum of 24 fert wide and extend up wo 1,20 fert on magentiflevel rack. Depending on the see selected, etther an ovethead beidge or underpuss would be constructed to provide actess to the center plaffom.

- 3,600 square foot stacon bulding with a minimum of pewenger wziting, restooms, and vending. ancritis.
- Parking for $30-50$ vehides.
- Aummeble acoss road, and in one casc, a new hidge is nearest ateral road.

For each of the four Build Ahermativs, the proposed facity was locred no best fit the exsting wopographec

 sitt required a tiew access road, sorb mads wroe kept 10.3 minimum length, providing the cleserst, most diect acess to the vite in Ighte of naturnd and human resource consmank. Vehinult wioces to the sation site that requre or increases trave through primesily residental or netghborhood streets was avoided wher positise

No-Build Alternative (Maintain Existing Ettrick Station)

 Only toume mainemance would be provided it thas station (Figere f). While the No-Beld Altemative doe noe divarb the Proiect sine not tesult in any inmefive impices, it would not address the Purpose and Nems for the Periect.

Boulevard Build Alternative

The centrid development fooss of Colonial Heigles is song US 1, known locelly as the "Boulevard". Thr Boulevard Build Atrernative is primarily on private properyy that wa ance a big-box retal store with a conrapondingy lages paved peeking arex adperat 50 Boukvand (LS 1). Curtrnt use of the sise nelludes * nge sliting operation (Saperior String, in equipment mental busivess (Rent-E-Quip), a cirper site sore (Carper-N-Flooss), and an uetmatic ice vending booth: As proposed, the plafioem, ataion, and parking wees woild be on the exten side of the rail hine, within the existeng praved paing ares. The SEHSR Tie-ll EIS Preferred Alremative calls for a diurd eack to be conseracted on the easem wide of dhe cail line. A new plaffiem would be pronided beween the corrent track and this newly constructed track, necossitating gradeeparated pedestrun access. The mainline isacks ier above gode as tha locision (approximatly 12 feet to 15 iefe, which necessitanss retaining wills, ze well as ADA ramps/clevator wcoess so the plefforen from the

Branders Bridge Build Alternative

Wemed in the Chosteffinl4 County, the Aronders Beidge Build Altermative site is ce private propery thet is currendy underdoped. However, the propenty has bren recenaly purchased sed the property conner inumds
 not sndabie at this teme As proposed, the sation and prating area would be con the essemn wde of the current mil line. The SEHSR Tie-II BIS Preferred Alemative cill for a thed trick to be constructed on the

为

 notion. A arw acoss thad to the seation would be necousey to manect to the trebifned Branders Brides

Ettrick Build Alternative

 Efrick sasion, sloag the eatern side of the nal lite. The sute a owned by CSXI. The SEHSR Tier-II EI Preierred Alrmaive calls for a third track wo be construated to the eset of the cxiseng rail Ene. A pew phafoem wonld be proviled leewem the orrent tack and thi newly construcmel trick, necravisang grade-
 a den for adaptive re-ise. Acceas to the station would contince on be via South Steret to eithet fumas Sired then Fast River Rowid of to Bessie Lane to Grenger Steere

Collier South Build Alternative

Incoed in the City of Petesburg the Coller South Suild Ahennative sim, plaffom, packing bot, sed scoen mad see within property owned by the City of Perenturg (See Fivee 8 in the EA). This station locabon

 the cuatern seaboard and SPHSR train to North Cambira (cenere phaform) to be served. Starion boctions

 design guidelines.
The SEHSR Ter-II EIS Prefered Almmative calls for a thind trad to be constructed eat of the oxisting rai line. A new plafifom vould be providel beeween the corent trad and thes newly constmicted tad,
 exquires an spprocinately 1,800 -foot long access rasa to the scuth to comesct to Roule 644 (Hairfx Row)

More dersis abour the screening process sod dhe Buid Aleernatives are provided in Chapter 2 of tha FA.

WHAT INPUT WAS RECEIVED DURING THE PROCESS ABOUT THE

ALTERNATIVES?

Once the Auild Alternstives were defined ted pechmanary concepts created, these wern shased with the SWG and the pubbic in a workshop hedd on September 16, 2015 in Hutick. laput on prefercoces or any remainurg concerns about the four fluild Alranatives was solioted at thas tme and ant donssed in Chapter 4 of the EA anid incloweded in Appendix K5.
At that workstop and diring the 30 day cermment period thet followed, a treal of thirty-five (35) cormmen theets ware tecrived. Of those tecrived during bhe comment period, thitten (13) cimerna sated dies preference for tie Etreick Auild Altermative location, eleven (1i) prefered the Boulerard Buld Alemative locaion, tine (9) prefered the Colier South Buld Alternative, and noo (2) det not sase s preference. At the wackstop, concems shout the Branders Briges Buld Alernative were discused and it receved no
 locaion were conaderabion of vehicular accoss to the Ruidd Alernative and conedernation of future
dereopuent potenis of the mall Ahemative site and kemounding land ised. Aftr the comment pencad
 Eitrick Boald Alemative.
 their preferences of ary of the Ruild Alernatives under conesidration. Hespanses are sho included in Appenda KS. The Brendess Beidge Build Alternaive dod not rexive any support from the localios os takeholikes in the SWG. The Boulevard Beld Alemstive was identifed at the prefored Build Ahermative
 Eerrick Buld Alemative wss identified by Chestafield County as the pefered loction. The Colire South Buid Altemative was the preferted boctinn by Dinwiddie County, Hopewell, Ciry of Petestburg, the Petesthurg Area Treasit autionity (PAT) sind Prace George County- The raolutions that suppot these prefarenco war prowided to the FRA, FHWA, and FTA \& p pet of the proces sed ser induded an Appendix K3

WHAT IS THE PREFERRED ALTERNATIVE AND WHY IS IT IMPORTANT?

The Preferred Altrmative is the Propectalemative that test meess the parpose and need of the Poriect wad a frored by the seexcies for aponoval end funsec consenction. The Preformel Alermative is the alemative which FRA and the Cocpersting Agenies, FHWA and FTA, beieve woold most doady slign with thei
 Fscooss. As the Lexd Federal Agency, FRA is responsible for considering the inpat from Cooperating. gencides with mgent to the sdectios of the Prefermil Alemative. FRA send the Cooperrating Agencies have
 the input peovided throughout the suly proces. FR.A lan idensified the Bowieven Build Almmive sa the Prefermed Altemative for the Proioct for the following treocris:

- The Boulerard siex is the most eccessible and viabile under consedration, an it is heated approuimath one mile (1.1 mile) from $1-95$ on a major senerid that peoride converient wcess to popdation centers in the fegen. Furfhermare:

- Accoss frien I -95 to the proposed ste is provided wong exising mesor anteribl, Temple Avemue and Bowleratd (US 1).
- improvenent to Temple Avernat access at 1.95 are carrenty under conatruction by vDOT:

[^14]TAm ES-12

- Rexising transer routes provide access to the site along Bouleward (US D).

The sine is consistent from a bad use perpective as it is propocoed in an oriting mimed/use and semmerrid comidoe.

- The stancon couid utuise exaning parking that as drectly accesable form Boulevard (US)). Equiring no new ecesess routrs of imporvement to mouta the provide access to the vaso
- The Boukerand Buid Alemistive \& the sation sie with the highest Wallecore", a widdy ued mesure of wallablity in the staicon area that locks at the prosence of elewalks, hed use wod the Nexi poskesm evvronment and nocseres how ameratie its to whing. The ste is bound
 cationg
- The Eoulevard Buald Aterrative las bern endosed by the bockits, the Ciry of Cabonis Heghtss No enviroumenal crostrinis aint that would perdule implementation of the stanco in this No entir
loction.

WHAT ARE SOME OF THE POTENTIAL ENVIRONMENTAL IMPACTS

 RELATED TO THE TRI-CITIES AREA MULTIMODAL STATION PROJECT? Suid Almatives would have both negative (advere) and poinive (benticat) mpaces on the envicomenc

 evaluations for each of the Brild Alemmatives

Appendix L: References

Allison Boyd, J. Barry Hokanson, Laurie A. Johanson, James C. Schwab, Kenneth C. Topping. (2014). Planning for Post-Disaster Recovery: Next Generation. Washington, DC: APA.

Amtrak Revenue Passenger-Miles and Load Factor. (2014, February) Retrieved December 6, 2016, from Bureau of Transportation Statistics:
http://www.rita.dot.gov/bts/publications/multimodal_transpo rtation_indicators/2014_02/passenger/amtrak_miles

Bureau of Tranpsortation Statistics. (2017/2018). Transportation Geography of the United States. Washigton, DC, USA: USDOT.

Bureau of Transportation Stastics. (2010, October). BTS Publications Fact Sheets: October 2010. Retrieved February 7, 2017, from Bureau of Transportation Statistics:
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/public ations/bts_fact_sheets/october_2010/html/figure_04.html
C. H. Robinson. (2015). Wide Open: How the Panama Canal Expasion Is Redrawing the Logistics Map. Eden Prairie, MN: The Boston Consulting Group
Cambridge Systematics. (2014). Virginia Multimodal Freight Plan Final Report 2014. Richmond, VA: Virginia Office of Intermodal Planing and Investment.

Crater Planning District Commission. (2001). Hurricane Floyd and the Crater Planning District: Storm Impact on Transportation Facilities. Petersburg, VA: Crater Planning District Commission.

David T. Hartgen, M. Gregory Fields, Adiran Moore. (2011, November 30). Impacts of Transportation Policies on Grenhouse Gase Emissions in U.S. Regions. Retrieved February 15, 2017, from Reason Foundation:
http://reason.org/studies/show/greenhouse-gas-policies-cost transp

Dennis Morris and Robert Crum. (2014). Richmond/Crater Region Transportation Overview. Richmond, VA.

Edwards, C. (. (2017, February 26). NCDOT-Director of Strategic Planning. (D. Hyder, Interviewer)

FHWA Office of Operations. (n.d.). Known Effectiveness of TDM Strategies. Retrieved December 23, 2016, from http://www.ops.fhwa.dot.gov/publications/fhwahop12035/im ages/fig101.jpg

Frank Gallivan, Eliot Rose, James Choe, Scott Williamson, Jack Faucett, Jeff Houk. (2014). FHWA Infrastructure Carbon Estimator: Final Report and User Guide. Washington, DC: USDOT.

Global Terrorism Database. (n.d.). Retrieved May 5, 2016, from National Consortium for the Study of Terrorism and Responses to Terrorism:
https://www.start.umd.edu/gtd/search/BrowseBy.aspx?categ ory=country

KFH Group. (2014). Richmond and Petersburg Metropolitan Planning Areas Coorindated Human Services Mobility Plan. Richmond, VA: DRPT.

Kimley Horn. (2015). Virginia Truck Parking Study. Richmond, VA: VDOT.

Michael Baker Inc. (2017). Environmental Assessmand and Section 4(f) Statement for theTri-Cities Multimodal Station. Washingtion, DC: Federal Rail Administration.

Michael Grant (ICF), William Seth Hartley (ICF), Ron Milam (Fehr \& Peers), Jerry Walters (Fehr \& Peers), Laurence O’Rourke (ICF), Jennifer Brickett (ICF), Sonya Suter (ICF). (2013). Handbook for Estimating Transportation Greenhouse Gases for Integration into the Planning Process. Washington: FHWA.

Michael Grant, Veverly Bowen, Maththew Day, Robert Winick, Jocely Bauer, Anna Chavie, Stephanie Trainor. (2011). Congestion Management: A Guidebook. Washington, DC: FHWA.

NARP. (2016, April 4). Ridership Statistics. Retrieved December 14, 2016, from National Association of Rail Passengers: https://www.narprail.org/site/assets/files/1038/cities_2015.p df

National Weather Service. (2000). Hurricane Floyd Floods of September 1999. Silver Spring Maryland: U.S. Department of Commerce.

NCDOT; VaDRPT. (2012, April). Southeast High Speed Rail (Raleigh to Richmond) Tier II Study. Retrieved March 23, 2017, from NCDOT:
https://connect.ncdot.gov/resources/RailPoliciesDocument/SE HSR_Recommendation_Report.pdf

NS Automotive Group. (2008). NS AutoDistribution Facility Guide Norfolk Southern

Port of Virginia. (2017). Port Stats. Retrieved February 14, 2017, from The Port of Virginia:
http://www.portofvirginia.com/about/port-stats/
Richmond Times Dispatch. (2016). Righmond's Future (2010-2015) Richmond, VA: The Richmond Times Dispatch.

Ries, H. (1906). The Clay Deposits of the Virginia Coastal Plain. 1906: Board of Agriculture And Immigration.

Stagliano, A. A. (2004). Rath \& Strong's Six Sigma Advanced Pocket Guide. New York: McGraw-Hill.

Strome College of Business. (2016). 2016 State of the Comonwealth Report. Norfolk, VA: Old Dominion University

Terrorism. (n.d.). Retrieved May 5, 2016, from The Federal Bureau of Investigation: https://www.fbi.gov/about-us/investigate/terrorism/terrorism-definition
USDOT. (2016, May 27). Statewide and NonMetropolitan Planning; Metropolitan Transportation Planning; Final Rule. Federal Register, 81(103), pp. 34050-34164.
(2012). Virginia 2012-2016 Strategic Highway Safety Plan. Richmond, VA: Virginia DOT.
(2015). Virginia Advantages: Distribution \& Global Logistics. Richmond, VA: Virginia Economic Development Partnership.

Wikipedia. (n.d.). Benjamin Harrison Memorial Bridge. Retrieved February 10, 2017, from Wikipedia the Free Encyclopedia:
https://en.wikipedia.org/wiki/Benjamin_Harrison_Memorial_B ridge

Yergin, D. (2013, November). Congratulations America. You're (Almos)t Energy Indepentent. Now What? Retrieved March 9, 2017,
from Politico:
http://www.politico.com/magazine/story/2013/11/congratulat
ions-america-youre-almost-energy-independent-now-what 098985

Zeihan, P. (2016). The Absent Superpower: The Shale Revooution and a World Without America. Austin, TX: Zeihan On Geopolitics.

Appendix M: Glossary of Terms

Acronym	Definition
AADT	Average Annual Daily Traffic
AC	Advanced construction funding (fund type TBD)
ADA	The Americans with Disabilities Act
ARRA	The American Recovery and Reinvestment Act (Economic Stimulus Act) Signed on February 17, 2009.
BOM	State bond match
BR	Bridge funds (BR/BROS)
BROS	Off-system bridge
BST	State bonds
BTS	Bureau of Transportation Statistics
BTU	The British thermal unit (Btu or BTU) is a traditional unit of work equal to about 1055 joules. It is the amount of work needed to raise the temperature of one pound of water by one degree Fahrenheit.
CAFE	Corporate Average Fuel Economy Standards
CCALS	Commonwealth Center for Logistics Systems
CENTERLINE MILE(S)	A centerline mile is a measure of the total length (in miles) of highway facility in-place or proposed, as measured along the highway centerline
CLASSIRAILROAD	A railroad with annual operating revenue greater than \$250,000,000
CLASS II RAILROAD	A railroad with revenues between those of a Class I and a Class III Railroad.
CLASS III RAILROAD	A railroad with annual operating revenue less than \$ $20,000,000$
CM	CMAQ funds
CM AC CONVERSION	CMAQ planned to be converted
CMAQ	Congestion Mitigation Air Quality
CMP	Congestion Management Process
CSX	CSX Transportation a Class I Railroad serving the Tri-Cities Area
СТВ	Commonwealth Transportation Board
DEMO	Demonstration Project Funds
DRPT	The Virginia Department of Rail and Public Transportation
DU	Dwelling Unit
EB	Equity Bonus (Minimum Guarantee) Funds
EJ	Environmental Justice as described in Executive Order 12898 and federal guidance derived from that executive order
EN	Enhancement
EQMG	Equity Bonus (Minimum Guarantee)
EV	Electric Vehicle
FAF	Freight Analysis Framework
FALL LINE	The edge of the Piedmont/Coastal Plain, where various rivers cross from hard bedrock to soft sediments, is marked by a line of rapids and waterfalls called the Fall Line. John Smith was the first European to report on this natural feature. In April, 1607, Captain Christopher Newport and John Smith led an expedition upstream from the site just chosen for Jamestown, until rapids at the current location of Richmond blocked further exploration by ship.
FARE	The money a passenger on public transportation has to pay
FARE BOX	The revenue derived from passenger fares
FEMA	Federal Emergency Management Administration
FHWA	Federal Highway Administration
FRA	Federal Rail Administration
FSM	GARVEE Soft Match
FTA	Federal Transit Administration
FY	Fiscal Year
GARVEE	Grant Anticipation Revenue Vehicle - Bonds secured by the expected federal transportation funds in future years.
GRV	GARVEE Bonds
GTRC	Greater Richmond Transit System

Acronym
HPD
HSIP
IM
IM AC CONVERSION
INT
ITS
JLUS
LANE MILE(S)
LCB
LEP
LOAD FACTOR
LOC
LOM
LOS
LRP
LTO
MAP 21
MG/EB AC CONVERSION
MGEB
MIX
MM
NEPA
NH
NH AC CONVERSION
NHPP

NHS
NOV

O
OPR
OTH
PE

PPT
RSTP
RSTP AC CONVERSION
RTE.
SAFETEA-LU
SEHSR
SRS
118 | Page

Definition
High Priority Demo funds
Highway Safety Improvement Program
Interstate Maintenance
Interstate Maintenance planned to be converted
Interest Income
The Intermodal Surface Transportation Efficiency Act of 1991. The Federal Transportation Authorization Bill signed on December 18, 1991.
Intelligent Transportation Systems-Transportation Management System and Technologies intended to improve the performance of the transportation system.
Joint Land Use Study
Lower Control Bound - In statistical process control the upper control bound represents a highest level of variance from the average that is expected. 99% of measured values should be below the UCB. (See UCB)
Limited English Proficiency
The number of passengers divided by the number of seats
Local funds
Local match
Level of Service: A qualitative measure of service
Long Range Plan
Landing/Take Off Operations
Moving Ahead for Progress in the j21st Century. The Federal Transportation Authorization Bill signed on June 29, 2012
Equity Bonus (Minimum Guarantee) planned to be converted
Equity Bonus (Minimum Guarantee)
Mix of federal (STP/MG/BR/BROS) and state funds
Mile Marker
The National Environmental Policy Act of 1970
National Highway funds
National Highway planned to be converted
The NHPP provides support for the condition and performance of the National Highway System (NHS), for the construction of new facilities on the NHS, and to ensure that investments of Federal-aid funds in highway construction are directed to support progress toward the achievement of performance targets established in a State's asset management plan for the NHS
The National High
Northern Virginia
Oxides of Nitrogen - a chemical compound that contributes to the formation of ground level ozone. NOx is usually a product of high temperature high pressure combustion (for example jet engines or diesel engines)
Open Container
Operating Revenue
Other funds (state, local, etc.)
Preliminary Engineering - Preliminary engineering is the location, design, and related work needed to advance a project to physical construction. Preliminary engineering includes preliminary and final design; both defined in 23 CFR 636.103 , and other project-related work leading to physical construction. This includes costs to perform studies needed to address requirements of the National Environmental Policy Act (NEPA) and other environmental laws. It may include advertising and other pre-award work such as bid analysis, although it is also acceptable to include this work as construction engineering costs.
TIFIA (Public/Private Partnership)
The portion of STP funds allocated to urban areas over 200,000 in population See STP
Regional STP planned to be converted
Route
Safe, Accountable, Flexible, and Efficient Transportation Equity Act: A Legacy for Users: The Federal Transportation Authorization Bill Signed into law on August 10, 2005. In some contexts it indicates Congressionally earmarked funding
Southeast High Speed Rail
Safe Routes to School fund
State funds

Acronym	Definition
STM	State match
STP	The Surface Transportation Program (STP) provides flexible funding that may be used by States and localities for projects to preserve and improve the conditions and performance on any Federal-aid highway, bridge and tunnel projects on any public road, pedestrian and bicycle infrastructure, and transit capital projects, including intercity bus terminals.
STP AC CONVERSION	STP planned to be converted
STP/EN	Enhancement funds
STP/HES	Highway Safety funds
STP/RR	Rail Safety funds
STP/SRS	Safe Routes to School funds
TBD	Fund source to be determined
TEA 21	Transportation Equity Act for the $21^{\text {st }}$ Century the Federal Transportation Authorization Bill Enacted on June 9, 1998.
TEU	Twenty Foot Equivalent Unit (the basic measure of shipping containers) is an inexact unit of cargo capacity describing the capacity of container ships and container terminals. It is based on the volume of a 20 -foot-long $(6.1 \mathrm{~m})$ intermodal container, a standard-sized metal box which can be easily transferred between different modes of transportation, such as ships, trains and trucks. The container is defined by its length though the height can be between 4 feet 3 inches (1.30 m) and 9 feet 6 inches (2.90 m), with the most common height being 8 feet 6 inches (2.59 m). By volume a TEU is approximately 1,360 cubic feet or 39 cubic meters.
TIP	Transportation Improvement Program
TITLE VI	Title VI of the Civil Rights Act of 1964
TOL	Tolls
TOLL	Tolls
TON	Long - 2240 pounds
	Metric or tonne-1000 kilograms/2204 pounds
	Short-2000 pounds
	By volume approximately 60 cubic feet
TRAN	DRPT Equity Bonus
TSM	Transportation Systems Management
TTI	Texas Transportation Institute
UCB	Upper Control Bound - In statistical process control the upper control bound represents a highest level of variance from the average that is expected. 99% of measured values should be below the UCB. (See LCB)
VDOT	The Virginia Department of Transportation
VDRPT	See DRPT
VMT	Vehicle Miles of Travel (1 car driving 1 mile is 1 VMT. 20 cars driving 10 miles each is 200 VMT.
voc	Volatile Organic Compound - a chemical compound that contributes to the formation of ground level ozone. These may be naturally occurring or the result of industrial processes.
VPA	Virginia Ports Authority

[^0]: The U.S. Census defines elderly as $65+$ years of age

[^1]: ${ }^{2}$ Control plots show the trend, average, and variability of data over time. The MPO is using them to identify trends in transportation system data. These charts include the average, an upper extreme (3 standard deviations above the average, a lower extreme (3 standard deviations below the average, unusual variability (ranging from two standard deviations above the average to 2 standwithin one star dio (Sthe 2004). with in one standard devition of the average (Stagliano, 2004)

[^2]: The projections in the report use a simple Monte Carlo Simulation to estimate future demand ang one thousand random iterations of the possible growth. Simulations show the uncertainty of projections and help decision-makers understand the possible outcomes.

[^3]: Figure 33: Primary Pavement Condition by Jurisdiction

[^4]: $5 \sim 2,300$ riders a day assuming 250 operating days per year.
 ${ }^{6}$ Part of the drop is attributable to better control of transfers and some to route changes. 201Page

[^5]: ${ }^{7} \sim 37$ Riders a day assuming 250 days of service
 Review Draft 25 Aril 2017

[^6]: ${ }^{12}$ Federal Rail Administration signed the EA/FONSI for this study on March 10th 2017. The executive summary for the EA/FONSI is included as Appendix K.
 ${ }^{13}$ The runway numbers indicate the direction of a landing airplane to the nearest 10 degrees. Thus runway 16 has an actual heading of 160°

[^7]: ${ }^{15}$ Petersburg was founded in the $17^{\text {th }}$ Century at the head of navigation on the Appomattox River. There was an active port at Petersburg until the end of sail powered coasting vessels.

 $$
 \text { Review Draft } 25 \text { Aril } 2017
 $$

[^8]: ${ }^{16}$ In 20132.8% of MPO commuters walked to work and 0.6% of MPO commuters bicycled

[^9]: ${ }^{17}$ All were near the head of navigation on the Appomattox River. Colonial Heights and Petersburg also had a busy trade in transferring cargoes across the river before and Petersburg also had a busy tract.
 the CSX A Line bridge was built.
 $34 \| P a g e$

[^10]: ${ }^{18}$ By law the minimum lifespan is 20 years when the MPO adopts the plan $36 \mid P$ age

[^11]: In 2016 USEPA lowered the ozone standard to 70 parts per billion but kept the fourth high st hour and the rolling three year average. A violation at a single monitor is sufficient for an rea to be declared nonattainment; however, a monitor may exceed the standard without

[^12]: gigure 94: Terrorist Incident by Type

[^13]:
 ${ }^{2}$ Marraum uuthoniad pped of 110 mpih - SEHSK Ter II FESS (2015)

 Teo-I EIS, Ratmand to Haripen Rost Pavenger Ral Frijet, $2 n 12$
 Ther-IE EIS, Southrat Fiph Speed Rail, Rictemond, VA of Raloph, NC (2015)

[^14]:

